Теорема. Пусть при всех t и в некоторой области переменных функции непрерывны и ограничены. Функции также непрерывны и ограничены в области Г. — 2 -периодические по t. Функции и — удовлетворяют условию Липшица по переменным и (при этих условиях существует и единственно решение). Тогда для и L>0:
(5)
0 (6)
Доказательство:
Решение задач Коши (1) и (4), (3) и (4) существует и единственно. Поэтому решение (1) и (4) будем искать методом приближений.
Обозначим
(*)
Функция — 2 -периодическая по .
Пусть
(7)
удовлетворяет условиям Липшица по переменным и . Проинтегрируем функцию :
.
Интеграл и поэтому
(7a)
В промежутке находятся те значения t, для которых будет существовать решение (1) - (4) и оно не выйдет за пределы области G. Это характеризуется так
Из теоремы Пикара следует, что при всех таких t приближенное выражение сходится к решению задачи Коши:
— целую часть от деления обозначим N. Тогда — дробная часть
,
где — остаточный интервал.
С учетом возможности такого разбиения
Если рассмотреть , то последнее выражение перепишется в виде:
= ,
где с учетом (4)
=
Рассмотрим интеграл при
и от не зависят. Из равенств (7а) следует, что последнее выражение равно нулю .
Вычислим
То есть
(8)
Мы можем сказать, что в (8), все, что стоит под знаком суммы
Так как
,
то последнее неравенство равносильно следующему:
Поэтому:
= , (9)
где
(10)
— удовлетворяет условию Липшица, поэтому мы можем воспользоваться этим, переходя к оценкам
(11)
(12)
Пусть , причем , тогда:
(13)
Оценим
(14)
Фактически нужно оценить величину .
Используем условие Липшица для , тогда последнее неравенство
(последняя оценка получена с помощью неравенства (11)).
(15)
(16)
Можно увидеть следующую закономерность
(17)
По методу математической индукции, для оценки верны. Покажем их справедливость и для
Используя формулу (13), далее получим:
(18)
Теперь в этом неравенстве перейдем к пределу при
(19)
Обозначим через
Так как мы пользовались условиями Липшица, нужно убедиться, что приближения не выходят из области G.
— по теореме Пикара это не выходит за пределы области G, то есть
В силу плотности числовой прямой
, где (20)
Проверим, вышло ли первое приближение за пределы области G. Пользуясь оценками (19) и (20), имеем:
Возьмем
,
тогда
Аналогично проверяем второе приближение
Возьмем
, тогда
И если
,
если
Если мы перейдем к перейдем к пределу при , то получим:
(21)
Если мы будем выбирать из условия (21), то использование условия Липшица законно.
необходимо согласовывать с с помощью (21) и
Решение уравнения
Рассмотрим уравнение
(1)
Данное уравнение второго порядка описывает колебательное движение. Здесь ω – некоторая действительная постоянная, а ε – малый параметр.
Делаем в уравнении (1) замену: тогда получим систему
(2)
Достарыңызбен бөлісу: |