Множества. Операции над множествами.
Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.
Обычно множества обозначаются большими латинскими буквами (как вариант, с подстрочными индексами: и т.п.), а его элементы записываются в фигурных скобках, например:
– множество букв русского алфавита;
– множество натуральных чисел;
Множества и являются конечными (состоящими из конечного числа элементов), а множество – это пример бесконечного множества.
Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø.
Принадлежность элемента множеству записывается значком , например:
– буква «бэ» принадлежит множеству букв русского алфавита;
– буква «бета» не принадлежит множеству букв русского алфавита;
– число 5 принадлежит множеству натуральных чисел;
– а вот число 5,5 – уже нет;
множество является подмножеством множества , если каждый элемент множества принадлежит множеству . Иными словами, множество содержится во множестве :
Значок называют значком включения.
Отношения между подмножествами удобно изображать с помощью условной геометрической схемы, которая называется кругами Эйлера.
Основные числовые множества
N
|
{1,2,3,...,n} Множество всех натуральных чисел
|
Z
|
{0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
|
Q
|
Множество рациональных чисел.
Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.
Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.
|
R
|
Множество всех вещественных чисел.
Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:
число — отношение длины окружности к её диаметру;
число — названное в честь Эйлера и др.;
Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.
|
Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.
Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}
Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}
Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}
Декартовым (прямым) произведением множеств и называется множество всех упорядоченных пар , в которых элемент , а элемент
Запишем декартово произведение множеств :
Достарыңызбен бөлісу: |