Нанотехнология негіздері оқу құралы Алматы


Классикалық физиканың қолданылу шекарасы. Гейзенбергтың анықталмағандық принципі



бет11/38
Дата03.10.2022
өлшемі3,32 Mb.
#151429
1   ...   7   8   9   10   11   12   13   14   ...   38
Байланысты:
treatise34956

2.2 Классикалық физиканың қолданылу шекарасы. Гейзенбергтың анықталмағандық принципі

Физикада негiзінен материалдарды құрайтын бөлшектермен және олардың арасындағы әсер ететін күштерге көңіл аударылады. Сондықтан көптеген материалтану мәселелерін физикалық моделдегенде және материал бөлшектерінің қозғалысын түсіндіретін дифференциалдық теңдеулерді шешуге алып келеді. Өте көп бөлшектерден тұратын материалдар үшін дәл шешімін табу үшін теңдеулер саны аса көп. Жалпы көп бөлшектерден құралған күрделі жүйелердің заңдылықтарын қалыптастыру мүмкін болуына қарамастан, соған байланысты шешiмдердiң жуық әдістерін пайдалануға тұра келеді.


Объектіге тәуелді физикалық мәселелерге байланысты материалтанудың физикалық мәселелерін екі аспектге бөлу орынды: классикалық физика және кванттық физика аспектілері. Классикалық физика аспектінде макроскпиялық өлшемдегі, ал кванттық физикада микроскопиялық өлшемде проблемаларды шешу мүмкін. Сондықтан классикалық физика колданылу шекарасына ие екендігі келіп шығады, олардың шекарасынан тысқары да оның заңдылықтары орындалмайды. Басқа кванттық механика заңдылықтарымен жазылатын микроәлем заңдылықтары күшке ие болады. Классикалық физиканың микроәлемге қолдану шекарасының критериясы Гейзенбергтың анықталмағандық принципі (қатынасы) болып табылады, соған сәйкес айнымалардың жұптарын бірге анықтау кезінде қателікке алып келеді. Мысалы, импульс жұптарын және координаттарын анықтағанда бұл қателік қатынаспен анықталады:

(DРх) (Dх) ³ ћ,


(DPy)(Dy) ³ ћ , (2.1)
(DPz) (Dz) ³ ћ ,

мұнда х, y, z осьтер координат бойынша бөлшектің импульсын анықтау кезіндегі DРх, DPy, DPz қателіктер; х, y, z осьтер координат бойынша бөлшектің орналасу кезіндегі Dх, Dy, Dz қателіктер; ћ=h/2p=1,054×10-34Дж×с; h = 6,62×10-34 Дж×с – Планк тұрақтысы.


(1.1) қатынасы импульс жұптары координат үшін Гейзенбергтің анықталмағандық принципі деген атауға ие, айтарлықтай белгілі түйіскен басқа жұптар айнымалы энергия және уақыт болып табылады. Олар үшін Гейзенбергтің анықталмағандық принципі төмендегіше жазылады:

(DЕ) (Dt) ³ ћ, (2.2)


мұнда DЕ – энергияны өлшеудегі қателік; Dt– уақытты өлшеудегі қателік.


Анықталмағандық принципінің ең маңызды ерекшелігі, ол өлшеуіш жабдықтардың дәлдігіне немесе оның өзгешеліктеріне ешқандай байланысты емес. Бұл нағыз физикалық принцип, бір уақытта (1.1) формуласы бойынша микробөлшек координатасын және импульсын немесе (1.2) формуласымен энергияны және уақытты бір уақытта принципиальды анықтау мүмкін еместігін дәлелдейді.
(1.1) –ден егер біз микробөлшектің орналасу орнын дәл анықтауға талпынсақ, онда координаттарды анықтау қателіктері нөлге ұмтылатын болады:
Dx ® 0, Dy ® 0, Dz ® 0.

Өйткені (1.1)-ден импульсты анықтау кезінде қателіктердің артатындығы келіп шығады:


х®¥, DPy ®¥, DPz®¥.

Демек координаттардың шамасының (орналасу орны) дәлдігі импульстың анықсыздығын артуына алып келеді.


Керісінше егер біз микробөлшектің импульсын дәл анықтауға талпынсақ, демек импульсты анықтау қателігі нөлге ұмтылады:

х® 0, DPy ® 0, DPz® 0.


Өйткені (1.1)-ден координата анықтау кезінде қателіктердің артатындығы келіп шығады :


Dx ®¥, Dy ®¥, Dz ®¥ .


Демек импульс шамасының дәлдігі координатаның анықсыздығын артуы есебінен болады. Анықталмағандық принципі бір уақытта дәл импульсты және микробөлшектің координаттарын анықтауға мүмкіндік бермейді. Олардың тек бір мәнін екіншісінің анықталмаушылық есебінен дәл білуге болады. Классикалық (макроскопиялық) физика көз қарасы принципінен анықталмағандық парадокс болып көрінеді, демек классикалық механика нақты дәл және бір уақытта қозғалыстағы денені координаты және импульсын табуға негізделген, бұл берілген орбитадағы космостық корабльді шығаруға және оларды жердің берілген нүктесіне қайтаруға, және сонымен қатар күнделікті өмірдегі көптеген мәселелерді шешуге мүмкіндік береді.






Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   38




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет