Для загрузки .csv файла с данными в pandas используется функция read_csv().
Начнем с простого образца под названием zoo. В этот раз для практики вам предстоит создать файл .csv самостоятельно. Вот сырые данные:
animal,uniq_id,water_need
elephant,1001,500
elephant,1002,600
elephant,1003,550
tiger,1004,300
tiger,1005,320
tiger,1006,330
tiger,1007,290
tiger,1008,310
zebra,1009,200
zebra,1010,220
zebra,1011,240
zebra,1012,230
zebra,1013,220
zebra,1014,100
zebra,1015,80
lion,1016,420
lion,1017,600
lion,1018,500
lion,1019,390
kangaroo,1020,410
kangaroo,1021,430
kangaroo,1022,410
Вернемся во вкладку “Home” https://you_ip:you_port/tree Jupyter для создания нового текстового файла…
затем скопируем данные выше, чтобы вставить информацию в этот текстовый файл…
…и назовем его zoo.csv!
Это ваш первый .csv файл.
Вернемся в Jupyter Notebook (который называется «pandas_tutorial_1») и откроем в нем этот .csv файл!
Для этого нужна функция read_csv()
Введем следующее в новую строку:
pd.read_csv('zoo.csv', delimiter=',')
Готово! Это файл zoo.csv, перенесенный в pandas. Это двухмерная таблица — DataFrame. Числа слева — это индексы. А названия колонок вверху взяты из первой строки файла zoo.csv.
На самом деле, вам вряд ли придется когда-нибудь создавать .csv файл для себя, как это было сделано в примере. Вы будете использовать готовые файлы с данными. Поэтому нужно знать, как загружать их на сервер!
Вот небольшой набор данных: pandas_tutorial_read
…можно получить всю информацию из файла.
Вернуться в Jupyter Notebook и использовать ту же функцию read_csv (не забыв поменять имя файла и значение разделителя):
pd.read_csv('pandas_tutorial_read.csv', delimeter=';')
Данные загружены в pandas!
Что-то не так? В этот раз не было заголовка, поэтому его нужно настроить самостоятельно. Для этого необходимо добавить параметры имен в функцию!
pd.read_csv('pandas_tutorial_read.csv', delimiter=';',
names=['my_datetime', 'event', 'country', 'user_id', 'source', 'topic'])
Так лучше!
Теперь файл .csv окончательно загружен в pandas DataFrame .
Примечание: есть альтернативный способ. Вы можете загрузить файл .csv через URL напрямую. В этом случае данные не загрузятся на сервер данных.
pd.read_csv(
'https://pythonru.com/downloads/pandas_tutorial_read.csv',
delimiter=';',
names=['my_datetime', 'event', 'country',
'user_id', 'source', 'topic']
)
Примечание: если вам интересно, что в этом наборе, то это лог данных из блога о путешествиях. Ну а названия колонок говорят сами за себя.