Microsoft Word 320 Камышева doc


Improving electric motor efficiency



Pdf көрінісі
бет67/70
Дата05.04.2023
өлшемі2,39 Mb.
#173837
түріУчебное пособие
1   ...   62   63   64   65   66   67   68   69   70
Байланысты:
Английский язык - Технологии и инновации (1)

Improving electric motor efficiency
via shape optimization using mathematical techniques
to obtain peak motor performance 
 
In our competitive global society, successful and economical design of automo-
tive and industrial structures is crucial. Optimizing the geometry of individual piec-
es of complex machines improves performance and efficiency of the entire device. 
 
To achieve this, the automotive and aeronautic industries often rely on 
shape optimization, an approach that uses modeling to create a framework 
for making devices as smooth and efficient as possible. “A smoother rota-
tion of the rotor can increase the energy efficiency of the motor, and at the 


100 
same time reduce unwanted side effects like noise and vibrations,” says 
mathematician Ulrich Langer. 
Langer, along with Peter Gangl, Antoine Laurain, Houcine Meftahi, and 
Kevin Sturm, co-authored a paper publishing in the SIAM Journal on Scien-
tific Computing that utilizes shape optimization techniques to enhance the 
performance of an electric motor. “By means of shape optimization meth-
ods, optimal motor geometries which could not be imagined beforehand can 
now be determined,” says Langer. 
Shape optimization problems are typically solved by minimizing the 
cost function, a mathematical formula that predicts the losses (or “cost”) 
corresponding with a process; the end goal is the creation of an optimal 
shape, one that minimizes the cost function while meeting certain con-
straints. 
Langer and his coauthors apply optimization techniques to an interior 
permanent magnet (IPM) brushless electric motor, the kind sometimes used 
in washing machines, computer cooling fans, and assembly tools. The mo-
tor’s inner rotor contains an iron core and permanent magnets. Because not 
all parts of the rotor’s geometry are able to be altered, the authors identify a 
modifiable design subregion in the rotor's iron core on which to apply shape 
optimization. Their objective is to improve the workings of the rotor, thus 
resulting in a smoother, more desirable rotation pattern. 
“Differentiating with respect to the shape is more complicated than dif-
ferentiating a function,” says Antoine Laurain. “In fact, there are many ways 
to define shape perturbations and differentiation with respect to shapes. The 
so-called “shape derivative” is one incarnation of these possibilities. It al-
lows us to explore a wide range of possible geometries for the optimiza-
tion.” Unlike the topological derivative, which generates a shape with une-
ven contours, the shape derivative employs a smooth alteration of the 
boundary. Implementing the obtained shape derivative in a numerical algo-
rithm provides a shape that allows the authors to improve the rotation pat-
tern. 
The authors’ optimization procedures stem from Lagrangian methods 
for approaching nonlinear problems, and demonstrate an efficient, exact 
means of calculating the shape derivative of the cost function. This simple 
and comprehensive method allows for the treatment of nonlinear partial dif-
ferential equations (PDEs) and general cost functions, rather than only line-


101 
ar PDEs. Ultimately, their optimization procedures are able to achieve a 27 
percent decrease in the cost functional of an IPM brushless electric motor, 
the particular example explored in the paper. 
For now, their application of mathematics in the form of a shape-
Lagrangian method adapted for nonlinear PDEs results in a shape that im-
proves the electric rotor's rotation pattern and the motor's overall perfor-
mance. 
Materials provided by Society for Industrial and Applied Mathematics: 
https://www.sciencedaily.com/releases/2015/12/151222112954.htm 
Text 8 


Достарыңызбен бөлісу:
1   ...   62   63   64   65   66   67   68   69   70




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет