ПӘннің ОҚУ-Әдістемелік кешені «Физиканы оқыту әдістемесі» «5В011000 – Физика» мамандығы үшін ОҚУ-Әдістемелік материалдары



бет52/56
Дата18.03.2017
өлшемі4,29 Mb.
#11978
1   ...   48   49   50   51   52   53   54   55   56

При выводе основного уравнения кинетической теории газов рассчитывают давление газа на стенки сосуда. Речь идет о среднем значении давления, так как в разные моменты времени о стенку ударяется разное число молекул, имеющих различные скорости. Но при большом числе молекул можно считать давление постоянным, а флуктуацию давления достаточно малой.

У учащихся может сложиться впечатление, что статистический метод был введен в науку как некий искусственный прием, позво­ливший описать поведение молекул, и что динамические законы являются основными по сравнению со статистическими. Следует предупредить эту ошибку и объяснить, что статистические законы существуют объективно. Классическая статистика возникла в XIX в. Этот факт выражал прогрессивное направление науки и был связан с изучением внутреннего строения вещества. В настоящее вре­мя известно, что поведение всех микрообъектов подчиняется статистическим законам, причем в квантовой физике в отличие от классической статистические законы проявляются не только вслед­ствие массовости и хаотичности движения, но и в связи с самой природой квантовых объектов (с невозможностью одновременного точного определения координаты и скорости частицы). Целесо­образно подчеркнуть, что статистический метод является основой современной физики. В частности, вероятностные, статистические законы господствуют в мире элементарных частиц.

Термодинамический метод описания явлений и процессов опи­рается на непосредственные данные наблюдений и опытов и на основные термодинамические принципы (законы термодинамики).

Термодинамика - феноменологическая теория, которая изучает явления и свойства макроскопических тел, связанные с превра­щением энергии, и не рассматривает их внутреннее строение. На­чало термодинамике как науке было положено в работе С. Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1827), в которой рассматривались тепловые процессы, в частности, вопросы изменения внутренней энергии при совершении работы и вопросы теории тепловых машин. В настоя­щее время термодинамика изучает превращения энергии не толь­ко в тепловых процессах, но и в электрических, магнитных, хими­ческих и др.

В основе термодинамического метода лежат следующие поня­тия: термодинамическая система, состояние термодинамической системы, термодинамические параметры состояния и равновесное состояние.

Термодинамической системой называют тело или совокуп­ность тел, обменивающихся энергией между собой и с внешними телами. Если обмена энергией с внешними телами нет, то система является изолированной. Понятие изолированной системы - аб­стракция, все реальные системы можно считать изолированными лишь с той или иной степенью точности.

С понятием состояния школьники уже знакомы из курса меха­ники. Они знают, что механическое состояние системы определя­ется совокупностью величин, характеризующих свойства системы и называемых параметрами состояния. К ним в механике относят координату, импульс и т. д. Состояние термодинамической систе­мы также определяется рядом параметров (термодинамических). Термодинамическими параметрами состояния являются темпера­тура, объем, давление и т. д. Число параметров, характеризующих состояние системы, зависит от свойств системы и от условий, в которых она находится. Трех названных выше параметров достаточно для описания изо­лированной системы «идеальный газ», но если рассматривать, на­пример, неоднородный газ, то необходимо учитывать еще и кон­центрацию.

Параметры могут быть внешними и внутренними. Температура и давление, например, зависят только от состояния самой системы и не связаны с внешними условиями. Объем же зависит от внешних условий. Некоторые параметры состояния, например, объем, обла­дают свойством аддитивности, другие, такие, как давление и тем­пература, не обладают. При изменении состояния системы меня­ются и ее параметры. Однако для целого ряда термодинамических систем между параметрами можно установить функциональную зависимость. Уравнение, выражающее эту зависимость, называли уравнением состояния (для системы «идеальный газ» это уравнение pV=NkT)

Состояние системы может быть равновесным и неравновесным. Равновесное состояние характеризуется неизменностью всех термодинамических параметров системы во времени и одинаковостью в пространстве в отсутствие внешних воздействий. Термодинамика изучает в основном равновесные состояния. Если система находится в неравновесном состоянии (т. е. параметры ее с течением времени меняются), то постепенно она придет в состояние равновесия и ее параметры выровняются во всех частях системы. Изолированная термодинамическая система с течением времени всегда приходит в равновесное состояние, из которого не может самопроизвольно выйти. Это утверждение составляет сущность закона термодинамического равновесия, являющегося одним из важнейших опытных законов термодинамики. Именно закон термодинамического равновесия делает возможным измерение температуры системы.

Целесообразно подчеркнуть, что уравнение состояния идеального газа и частные газовые законы справедливы лишь для равновесных процессов. К неравновесным процессам они неприменимы, так как в этом случае параметры состояния различны для разных частей системы. Из одного равновесного состояния в другое система может перейти под влиянием внешнего воздействия.

Такой переход в термодинамике называют процессом. Если во время процесса система остается равновесной, то и процесс называют равновесным. Равновесный процесс осуществляется тогда, когда время релаксации (время перехода системы из неравновес­ного состояния в равновесное) много меньше времени осуществления процесса. В этом случае систему в каждый момент времени с той или иной степенью точности считают равновесной, или статической. Поскольку в действительности отклонения от статичности имеются (иначе нельзя было бы осуществить процесс), то состояние системы называют квазистатическим, а процесс - квазистатическим процессом. Следует иметь в виду, что на графике можно изобразить только равновесное (квазистатическое) состояние или равновесный (квазистатический) процесс.

При изучении раздела «Молекулярная физика» учителю следует постоянно подчеркивать единство статистического и термодинамического методов. В этом отношении полезно обобщить и систематизировать знания школьников о статистическом и термодинамическом подходах к описанию тепловых явлений. Обобщение знаний проводят в конце изучения всего раздела, а связь между этими подходами представляют в виде схемы (рис. 2).


Каталог: ebook -> umkd
umkd -> Мамандығына арналған Сұлтанмахмұттану ПӘнінің ОҚУ-Әдістемелік кешені
umkd -> Қазақстан Республикасының
umkd -> Қазақстан Республикасының
umkd -> Студенттерге арналған оқу әдістемелік кешені
umkd -> ПӘннің ОҚУ Әдістемелік кешені 5В011700 «Қазақ тілі мен әдебиеті» мамандығына арналған «Ұлы отан соғысы және соғыстан кейінгі жылдардағы қазақ әдебиетінің тарихы (1941-1960)» пәнінен ОҚытушыға арналған пән бағдарламасы
umkd -> «Балалар әдебиеті» пәніне арналған оқу-әдістемелік материалдар 2013 жылғы №3 басылым 5 в 050117 «Қазақ тілі мен әдебиеті»
umkd -> ПӘннің ОҚУ-Әдістемелік кешенінің
umkd -> 5 в 011700- Қазақ тілі мен әдебиеті
umkd -> 5 в 011700- Қазақ тілі мен әдебиеті
umkd -> «Филология: қазақ тілі» мамандығына арналған


Достарыңызбен бөлісу:
1   ...   48   49   50   51   52   53   54   55   56




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет