Пифагор теоремасының ДӘлелдемелерінің ТҮрлері және қолданылуы


Қосымша салулар арқылы дәлелдеу



бет5/7
Дата03.12.2016
өлшемі0,66 Mb.
#3065
1   2   3   4   5   6   7
Қосымша салулар арқылы дәлелдеу.

Бұл әдістің негізі тең шамалы фигуралар пайда болу үшін катеттерге салынған квадраттарға және гипотенузаға салынған квадратқа тең фигуралар салынады.



  • 7 – суретте қарапайым Пифагор фигурасы, яғни қабырғаларына квадрат салынған АВС тікбұрышты үшбұрышы бейнеленген. Бұл фигура алдыңғы тікбұрышты үшбұрышқа тең 1 және 2 үшбұрыштарымен толықтырылады.

Пифагор теоремасының дұрыстығы AEDFPB және ACBNMQ алтыбұрыштарының тең шамалы екендігінен шығады. Мұнда CEP, EP түзуі AEDFPB алтыбұрышын екі тең шамалы төртбұрыштарға, CM түзуі ACBNMQ алтыбұрышын екі тең шамалы төртбұрыштарға бөледі, А центрімен жазықтықты 90° бұрсақ АЕРВ төртбұрышы АСМQ төртбұрышына беттеседі.

  • 8- суретте Пифагор фигурасы қабырғалары катеттерге салынған квадраттар қабырғаларына параллель тіктөртбұрышқа толықтырылады.Бұл тіктөртбұрыш үшбұрыштар мен тіктөртбұрыштарға бөленеді. Пайда болған тіктөртбұрыштан 1,2,3,4,5,6,7,8,9 көпбұрыштарын алып тастаймыз, сонда гипотенузаға салынған квадрат қалады. Енді осы тіктөртбұрыштан 5,6,7 және штрихталған тіктөртбұрыштарды алып тастасақ, катеттерге салынған квадрат пайда болады. Енді бірінші жағдайда алып тасталған фигуралар мен екінші жағдайда алып тасталған фигуралар тең шамалы екендігін дәлелдейміз.

  • 9 суретте Нассириддин (1594 ж. ) дәлелдеуі көрсетілген. Мұнда: PCL – түзу;

KLOA = ACPF = ACED = a2;

LGBO = CBMP = CBNQ = b2;

AKGB = AKLO + LGBO = c2;  

бұдан  c2 = a2 + b2.



11 - суретте Гофман (1821 ж.) дәлелдеуі бейнеленген. Мұнда : ABC -тік бұрышы С болатын тікбұрышты үшбұрыш; BF кесіндісі CB кесіндісіне перпендикуляр және тең, BE кесіндісі AB кесіндісіне перпендикуляр және тең, AD кесіндісі AC -ға перпендикуляр және тең; F, C, D нүктелері бір түзудің бойында жатады; ADFB және ACBE төртбұрыштары теңшамалы, өйткені ABF=ECB; ADF және ACE үшбұрыштары тең шамалы; енді екі тең шамалы төртбұрыштан да екеуіне ортақ АВС үшбұрышын алып тастаймыз, сонда мына теңдікті аламыз:




Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2025
әкімшілігінің қараңыз

    Басты бет