Пифагор теоремасының ДӘлелдемелерінің ТҮрлері және қолданылуы



бет2/7
Дата03.12.2016
өлшемі0,66 Mb.
#3065
1   2   3   4   5   6   7

Бірақ, бұл теореманы Пифагорға дейін 1500 жыл бұрын ежелгі египеттіктер қабырғалары 3,4 және 5 тең болатын үшбұрыш тікбұрышты болатынын білген және бұл қасиетті жер учаскелерін, құрылыс тұрғызу үшін қолданған. Сонымен қатар мың жылдықтар бұрын Египеттегі, Вавилондағы, Қытайдағы үлкен храмдар салу үшін де қолданған. Пифагордан 600 жыл бұрын қытайдың математика-астрономиялық «Чжоу-би» шығармасында тікбұрышты үшбұрышқа қатысты басқа да теоремалар арасында Пифагор теоремасы да бар. Бұдан да ертерек теорема үндістерге де белгілі болған.

Теореманың қарапайым дәлелдеуі


Тік бұрышты үшбұрыштың гипотенузасына салынған квадрат катеттеріне салынған квадраттардың қосындысымен тең шамалы.

Теореманың қарапайым дәлелдеуі тең бүйірлі үшбұрыш жағдайында қарастырылады. Теореманың өзі де осыдан басталған.



Теореманың дұрыстығына көз жеткізу үшін тең бүйірлі тікбұрышты үшбұрыштар мозаикасына қарау жеткілікті. Мысалы, ΔABC үшін : АС гипотенузасына салынған квадрат 4 үшбұрыштан құралған, ал катеттерге салынған квадраттардың әрқайсысы екі үшбұрыштан тұрады. Теорема дәлелденді.

Теореманы алгебралық әдіспен дәлелдеу


Т - катеттері а, b және гипотенузасы с болатын тікбұрышты үшбұрыш болсын. ( а-сур.). с22+b2 екенін дәлелдеу керек.

Қабырғалары а+b -ға тең Q квадратын саламыз(б-сур.). Q квалратының қабырғаларынан А, В, С, D нүктелерін, пайда болған АВ, ВС, CD, DA кесінділері катеттері а және b –ға тең Т1, Т2, Т3, Т4 тікбұрышты үшбұрыштар құратындай етіп саламыз. ABCD тіктөртбұрышын Р деп белгілейміз. Енді Р қабырғалары с-ға тең квадрат екенін көрсетуіміз қажет.



Барлық Т1, Т2, Т3, Т4 тік бұрышты үшбұрыштары Т тік бұрышты үшбұрышына тең (екі катеті бойынша). Сондықтан олардың гипотенузалары Т тікбұрышты үшбұрышының гипотенузасына, яғни с кесіндісіне тең. Енді бұл төртбұрыштың бұрыштары тік екенін дәлелдейміз.

және - Т үшбұрышының сүйір бұрыштары. Онда

Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2025
әкімшілігінің қараңыз

    Басты бет