3) Складываем почленно уравнения (1), (2), (3) и с учетом уравнения (4) и равенства IA1 = IA2 = IA0 получаем:
, откуда следует решение для тока:
.
Все действительные токи определяются по методу наложения через соответствующие симметричные составляющие, например, ток короткого замыкания равен току фазы А:
.
Практическая работа № 13 «Исследование режимов работы линии с двухсторонним питанием»
Урок
Тема урока: Допустимые нагрузки на провода и кабеля.
Урок
Тема урока: Основные понятия о расчете сети на потерю напряжения.
Урок
Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полезного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.
Возможны следующие причины искажения формы кривых токов и напряжений в сложной цепи:
наличие в электрической цепи нелинейных элементов, параметры которых зависят от мгновенных значений тока и напряжения [R, L, C=f(u,i)], (например, выпрямительные устройства, электросварочные агрегаты и т. д.);
наличие в электрической цепи параметрических элементов, параметры которых изменяются во времени[R, L, C=f(t)];
источник электрической энергии (трехфазный генератор) в силу конструктивных особенностей не может обеспечить идеальную синусоидальную форму выходного напряжения;
влияние в комплексе перечисленных выше факторов.
Нелинейные и параметрические цепи рассматриваются в отдельных главах курса ТОЭ. В настоящей главе исследуется поведение линейных электрических цепей при воздействии на них источников энергии с несинусоидальной формой кривой.
Из курса математики известно, что любая периодическая функция времени f(t), удовлетворяющая условиям Дирихле, может быть представлена гармоническим рядом Фурье:
.
Здесь А0 – постоянная составляющая, k-я гармоническая составляющая или сокращенно k-я гармоника. 1-я гармоника называется основной, а все последующие высшими.
Амплитуды отдельных гармоник Ак не зависят от способа разложения функции f(t) в ряд Фурье, в то же время начальные фазы отдельных гармоник зависят от выбора начала отсчета времени (начала координат).
Отдельные гармоники ряда Фурье можно представить в виде суммы синусной и косинусной составляющих:
.
Тогда весь ряд Фурье получит вид:
.
Соотношения между коэффициентами двух форм ряда Фурье имеют вид:
.
Если k-ю гармонику и ее синусную и косинусную составляющие заменить комплексными числами, то соотношение между коэффициентами ряда Фурье можно представить в комплексной форме:
.
Если периодическая несинусоидальная функция времени задана (или может быть выражена) аналитически в виде математического уравнения, то коэффициенты ряда Фурье определяются по формулам, известным из курса математики:
,
Достарыңызбен бөлісу: |