,
,
.
На практике исследуемая несинусоидальная функция f(t) обычно задается в виде графической диаграммы (графически) (рис. 118) или в виде таблицы координат точек (таблично) в интервале одного периода (табл. 1). Чтобы выполнить гармонический анализ такой функции по приведенным выше уравнениям, ее необходимо предварительно заменить математическим выражением. Замена функции, заданной графически или таблично математическим уравнением, получила название аппроксимации функции.
Т а б л и ц а 1
m
|
0
|
1
|
2
|
3
|
…
|
…
|
…
|
…
|
M
|
tm
|
t0
|
t1
|
t2
|
t3
|
…
|
…
|
…
|
…
|
T
|
fm
|
f0
|
f1
|
f2
|
f3
|
…
|
…
|
…
|
…
|
f0
|
В настоящее время гармонический анализ несинусоидальных функций времени f(t) выполняется, как правило, на ЭВМ. В простейшем случае для математического представления функции применяется кусочно-линейная аппроксимация. Для этого вся функция в интервале одного полного периода разбивается на M=20-30 участков так, чтобы отдельные участки были по возможности ближе к прямым линиям (рис. 1). На отдельных участках функция аппроксимируется уравнением прямой fm(t)=am+bmt, где коэффициенты аппроксимации (am, bm) определяются для каждого участка через координаты его конечных точек, например, для 1-го участка получим:
; .
Период функции Т разбивается на большое число шагов интегрирования N, шаг интегрирования , текущее время ti=hi, где i порядковый номер шага интегрирования. Определенные интегралы в формулах гармонического анализа заменяются соответствующими суммами, их подсчет выполняется на ЭВМ по методу трапеций или прямоугольников, например:
.
Для определения амплитуд высших гармоник с достаточной точностью число шагов интегрирования должно составлять не менее 100k, где k номер гармоники.
В технике для выделения отдельных гармоник из несинусоидальных напряжений и токов применяют специальные приборы, называемые гармоническими анализаторами.
Практическая работа № 14 «Методы графической обработки результатов измерений»
Урок
Практическая работа № 15 «Включение ламп в сеть трехфазного тока»
Урок
Тема урока: Определение сечения провода по допустимой потере напряжения без учета индуктивного сопротивления.
Урок
Как известно, в электроэнергетике переменные токи и напряжения характеризуются их действующими значениями. Математически действующее значение любого периодически изменяющегося тока (напряжения) определяется как среднеквадратичное значение функции за период:
;
Пусть функция тока содержит в своем составе все компоненты ряда Фурье:
Достарыңызбен бөлісу: |