Ответ : d=35 мм.
№ 50.
Определить длину трубы l, при которой расход жидкости из бака будет в два раза меньше, чем через отверстие того же диаметра d. Напор над отверстием равен H. Коэффициент гидравлического трения в трубе принять равным λ=0.025.
Дано : H=8 м ; d=60 мм ; Q1=0.5Q2 ; λ=0.025.
Найти : l.
Решение.
Составим уравнение Бернулли для двух сечений трубы 0-0 и 1-1 :
H= (1)
где v1 – скорость в сечении 1-1 ; hλ – потери напора по длине тубы.
Потери напора определяются по формуле Вейсбаха-Дарси :
hλ= (2)
где λ – коэффициент гидравлического трения ; Q1 расход в трубе.
Подставляя (2) в (1) и, учитывая что скорость v1 связана с расходом Q1 выражением :
v1= , получим:
H=
Отсюда находим длину трубы :
l= (3)
Расход через отверстие определяется выражением :
Q2= (4)
где μ=0.62 – коэффициент расхода (рекомендации стр. 109 [1]) ; S0 – площадь сечения отверстия (S0=πd2/4) ; H – напор, под которым происходит истечение (глубина погружения отверстия под уровень жидкости в баке).
Учитывая, что по условию Q1=0.5Q2, то подставляя (4) в (3) и, учитывая выражение для S0, получим :
l= (5)
Вычисления по формуле (5) дают :
l= м
Достарыңызбен бөлісу: |