Үйге тапсырма беру: Проекциялар жазықтығына 30º-қа тең бұрыш жасап көлбейтін кесінді ұзындығы 40 мм болатын кесіндіге тік бұрыштап проекцияланады. Осы кесіндінің ұзындығын есептеп анықта.
Сабақ: №12
Сабақтың тақырыбы:
Проекциялаушы жазықтық.
Сабақтың мақсаты:
а) Білімділік: Оқушыларға тың мәліметтер беріп, білімді
білімдерін қалыптастыру.
ә) Дамытушылық: Танымдық қызығушылықты дамыту, ғылым
ғылым мен техниканың жетістіктерін пайдалану.
б) Тәрбиелілік: Сызу сыздыру арқылы оқушыларды тазалыққа,
ұқыптылыққа үйрету.
Сабақтың көрнекілігі: А4 пішіміндегі қағаз, қарындаштар, сызғыш, өшіргіш, шеңберсызар және тағы басқа.
Сабақтың өту барысы:
Ұйымдастыру кезеңі.
Үйге берілген тапсырманы тексеру.
Жаңа тақырыпты түсіндіру.
Тапсырмаларды орындау.
Сабақты бекіту.
Үйге тапсырма.
Сабақтың барысы:
Проекциялар жазықтығына параллель жазық фигура өзінің пішінін және өлшемдерін сақтап проекцияланады. Жазық фигура деп барлық нүктелері бір жазықтықта жататын фигураны айтады.
Центр деп аталатын нүктеден бірдей қашықтықтағы жазықтық нүктелерінің геометриялық орнын шеңбер деп атайды. Егер шенбердің барлық нүктелері проекциялар жазықтығынан бірдей қашықтыкта орналасса, онда шеңберді проекциялар жазықтығына параллель дейді. Проекциялар жазықтығына параллель шеңбер өзіне тең шеңберге проекцияланады.
Проекциялар жазықтығына параллель орналасқан тіктөртбұрыш немесе шеңбер жазықтықты анықтайды. Мұндай жазықтықтар проекция жазықтығына параллель болатынын анғару қиын емес. Қиылыспайтын жазықтықтарды өзара параллель жазықтықтар деп атайды. Екі жазықтықтың параллель болу белгісі — олардың біреуінің қиылысатын екі түзуі екіншісінің екі түзуіне сәйкес параллель болуы қажет. Проекциялар жазықтығына параллель жазықтықты деңгейлік жазықтық деп атайды. Деңгейлік жазықтықта жатқан кесінді, жазық фигура бұрмаланбай, өздерінің пішіндерін, өлшемдерін сақтап проекцияланады.
Үйге тапсырма беру: A, В және С нүктелері анықтайтын шеңбер проециялар жазықтығына параллель орналасқан. Oсы шеңбердің тікбұрышты проекциясын сал (36, ә-сурет).
Сабақ: №13
Сабақтың тақырыбы:
Шеңбердің проекциясы туралы.
Сабақтың мақсаты:
а) Білімділік: Оқушыларға сызу құралдарын қолдану амал тәсілін
үйрету, жаңа мағлұмат беру және т.б.
ә) Дамытушылық: Сабақ оқытудың негізгі үрдісін есте қалдыру,
оқушы санасына терең сіңіру.
б) Тәрбиелілік: Сұлулық тәрбиесі, табиғат пен өнердегі сұлулықты
түсіне білу.
Сабақтың көрнекілігі: А4 пішіміндегі қағаз, қарындаштар, сызғыш, өшіргіш, шеңберсызар және тағы басқа.
Сабақтың өту барысы:
Ұйымдастыру кезеңі.
Үйге берілген тапсырманы тексеру.
Жаңа тақырыпты түсіндіру.
Тапсырмаларды орындау.
Сабақты бекіту.
Үйге тапсырма.
Сабақтың барысы:
Шеңбер жазықтығы мен проекциялар жазықтығы параллель орналасса, шеңбер бұрмаланбай, өзінің нақты шамасын сақтап, шеңберге проекцияланады деп жоғарыда айтқан болатынбыз. Бұл жағдайда шеңбер центрінің проекциясын центр етіп алып, радиусы берілген шеңбердің радиусына тең шеңберді шеңберсызар көмегімен жүргіземіз.
Шеңбер жазықтығы проекция жазықтығына перпендикуляр болса, шеңбер оның диаметріне тең кесіндіге тік бұрыштап проекцияланады.
Жазықтығы проекциялар жазықтығына көлбеу болатын шеңбердің проекциясын алу үшін, оның нүктелерінің проекцияларын тауып, оларды қисық сызықпен қосу керек. Шеңбердің параллель проекциясы болатын қисық — тұйық сызық (37, а- сурет). Оны эллипс деп атайды. Эллипстің центрі — О нүктесі. Оның екі нүктесін қосатын кесінді центр арқылы өтсе, оны диаметр деп атайды. Ең ұзын диаметр эллипстің үлкен осі, ал ең қысқа диаметр эллипстің кіші осі болады. Осьтер өзара перпендикуляр орналасады. Оның осьтерге қарағанда симметриялы сызық болатынын 37, а-суреттен көреміз. АВ — үлкен ось; CD — кіші ось; ЕҒ, MN — эллипстін диаметрлері. Эллипсті біз шеңбердің параллель проекциясы ретінде анықтадық. Оның басқа анықтамалары көп. Олардың біреуін ғана атап кетейік. Эллипс деп оның фокустары делінетін F1 және Ғ2, нүктелерінен. қашықтықтарының қосындысы тұрақты шама болатын жазықтық нүктелерінің геометриялық орнын айтады: |F1,F] + |Ғ2Ғ| = |F1N\ + |F2N] = \АВ\ = а. Фокустары белгілі эллипсті салу оңай. Ол үшін ұзындығы а-ға тең жінішке жіп алып, оның ұштарын екі инеге байлайды. Инелерді F1 және Ғ2, нүктелеріне түйрейді. Қарышдашпен жіпті кере отырып (37, а-суретте көрсетілгендей), сызып шықсақ, эллипс шығады. Эллипс көбіне үлкен және кіші осьтерінің њзындыктары арқылы беріледі. Осьтерді өзара перпендикуляр және бірін-бірі қақ бөлетіндей етіп орналастырғаннан кейін ортақ центрлі екі шеңбер жүргіземіз. Олардың біреуінің диаметрі үлкен оське, екіншісінің диаметрі кіші оське тең. Сыртқы және ішкі шеңбер тең 12 бөлікке (немесе одан да көп бөліктерге) бөлінеді (37, б-сурет). Сыртқы шеңбердің бөліну нүктелері арқылы кіші оське, оған сәйкес ішкі шеңбердің бөліну нүктелері арқылы үлкен оське параллель түзулер жүргізіп, олардың қиылысу нүктелерін белгілейміз. белгіленген нүктелерді үлгі сызгыштың (лекало) көмегімен қоссақ, эллипсті аламыз.
П роекциялар жазықтығына көлбеу шеңбердің тікбұрышты проекциясы да эллипс болады. Бұл жағдайда эллипстің үлкен осі шеңбердің диаметріне тең, ал кіші осі шеңбер мен проекциялар жазықтықтарының арасындағы бұрыштың косинусына байланысты болады.
Үйге тапсырма беру: Үлкен осі 80 мм, кіші осі 50 мм болатын эллипс сал.
Сабақ: №14
Сабақтың тақырыбы:
Проекцияда көрінетіндікті анықтау. Қайтымдылық туралы түсінік.
Сабақтың мақсаты:
а) Білімділік: Оқушылардың білімін қалыптастырып қана қоймай,
оларға тың мәліметтер беру.
ә) Дамытушылық: Жеке тұлғаны дамыту, талдау, салыстыра білу
қабілеттерін дамыту.
б) Тәрбиелілік: Сызу арқылы оқушыларды тазалыққа,
ұқыптылыққа үйрету.
Құрал-жабдықтар, көрнекті құралдар: А4 пішіміндегі қағаз, қарындаштар, сызғыш, өшіргіш, шеңберсызар және тағы басқа.
Сабақтың өту барысы:
Ұйымдастыру кезеңі.
Үйге берілген тапсырманы тексеру.
Жаңа тақырыпты түсіндіру.
Тапсырмаларды орындау.
Сабақты бекіту.
Үйге тапсырма.
Сабақтың барысы:
Проекцияға нәрсе проекциялар жазықтығы мен бақылаушының арасында орналасатындай етіп қараймыз. Сонда нәрсенің керінетін сызықтарының проекциялары тұтас негізгі жуан сызықпен, ал керінбейтін сызықтардың проекциялары үзілме сызықпен жүргізіледі. Проекцияда көрінетін сызықтарды көрінбейтін сызықтан ажыратып үйрену керек. Осы мақсат үшін бәсекелес нүктелер әдісі қолданылады. Проекциялары бірігіп түсетін екі нүктені бәсекелес нүктелер дейді. 38, а-суретте проекциялары А' және В' бір нүкте болатын А жљне В нүктелері кескінделген. Олардың кайсысының проекциясы көрінеді? Осы мағынада А және В — бәсекелес нүктелер. Екі нүктенің проекциялар жазықтығынан қашықтау, бақылаушыға жақындау орналасқаны кескінде көрінеді. В нүктесі А нүктесіне қарағанда, проекциялар жазықтығынан қашықтау, бақылаушыға жақын- дау, Сондықтан кескінде В нүктесін көреміз, ал А нүктесі В нүктесінің тасасында болғандықтан, көрінбейді. Күрделірек мысал ретінде ортақ кабырғасы бар екі үшбұрыштың (ABC және ABD) проекцияларын қарастырайық (38, ә-сурет), Ортақ қабырғасы бар екі үшбұрыш екіжақты бұрыш құрайды. Екіжақты бұрыштың қыры АВ және екі жағы ABC және ABD болады. Проекцияны шектейтін сызық әркашан да көрінеді. Сондықтан А'В\ ВС' және А'D кесінділерін тұтас негізгі жуан сызықпен бастырып жүргізе беруге болады. AC және BD қабырғаларының проекциялары қиылысады. Қиылысу нүктесін Е' және Ғ' әріптерімен белгілеп, қос нүкте ретінде қарастырамыз. Е нүктесі AC қабырғасында, Ғ нүктесі BD қабырғасында жатады. С'Е' және D'F' кесінділерін де тұтас негізгі жуан сызықпен бастырып жүргізе беруге болады, өйткені, олардың бәсекелес нүктелері жоқ. Кескінде АЕ мен ВҒ кесінділерінің біреуі көрінеді, ал екіншісі көрінбейді. Е және Ғ бәсекелес нүктелерін қарастырайық. Е нүктесі Ғ нүктесіне қарағанда, проекциялар жазықтығынан қашық орналасқан. Олай болса, Е нүктесі, оған сәйкес АЕ кесіндісі көрінеді, ал Ғ нүктесі, оған сәйкес ВҒ кесіндісі көрінбейді. Кескінде А'Е' тұтас негізгі жуан сызықпен, ал ВҒ үзілме сызықпен бастыра жүргізілген (38, б-сурет).
Достарыңызбен бөлісу: |