Сабақ: Мектеп: А. Макаренко жом күні



бет7/8
Дата19.12.2021
өлшемі68,23 Kb.
#103624
түріСабақ
1   2   3   4   5   6   7   8
Байланысты:
3-15Сфера және шар

Кері байланыс . Екі жұлдыз ,бір тілек

Бағалау . Өзін-өзі бағалау критерий бойынша,ОүБ

Үйге тапсырма:


Күнделікке жазады.

Саралау – оқушыларға қалай көбірек қолдау көрсетуді жоспарлайсыз?

Бағалау – оқушылардың материалды меңгеру деңгейін қалай тексеруді жоспарлайсыз?

Денсаулық және қауіпсіздік техникасының сақталуы

Қабілетті оқушыларға карточкамен қосымша дайындаған тапсырмалар беру.

Бағалауда есептерді шығару жұмысы, қосымша сұрақ беріледі. Алдын ала дайындалған шкала бойынша бағаланады немесе шкалаға жетпесе қосымша тапсырмалар беру арқылы толықтырылады.


Сергіту сәтінде мойынға жаттығу жасатамын.Топтық ережені сақтайды


Сабақ бойынша рефлексия

Сабақ мақсаттары/оқу мақсаттары дұрыс қойылған ба?Оқушылардың барлығы ОМ қол жеткізді ме?Жеткізбесе неліктен?Сабақта саралау дұрыс жүргізілді ме?Сабақтың уақыттық кезеңдері сақталды ма?Сабақ жоспарынан қандай ауытқулар болды,неліктен?



Бұл бөлімді сабақ туралы өз пікіріңізді білдіру үшін пайдаланыңыз.Өз сабағыңыз туралы сол жақ бағанада берілген сұрақтарға жауап беріңіз.




Жалпы баға

Сабақтың жақсы өткен екі аспектісі(оқыту туралы да,оқу туралы да ойланыңыз)?

1:

2:

Сабақты жақсартуға не ықпал ете алады(оқыту туралы да,оқу туралы да ойланыңыз)?



1:

2:

Сабақ барысында сынып туралы немесе жекелеген оқушылардың жетістік /қиындықтары туралы нені білдім,келесі сабақтарда неге көңіл бөлу қажет?





Сфера дегеніміз не?

- Шар дегеніміз не?

- Шар мен сфераның жазықтықпен қимасы (үлкен дөңгелек, үлкен шеңбер)

- Қиманың центрі шар центрінен қиюшы жазықтыққа түсірілген перпендикуляр болады.

- Шарға (сфераға) жанама жазықтық.

- Жанама жазықтықтың радиусқа       болуы.

- Шар бөліктері. (олардың элементтері) (сегменті, қабаты, секторы)

- Шардың практикада қолданылуы.

2) Енді жаңа сабағымызға көшелік. Цилиндр, Конустың, қиық конустың жазбасы. 

- Шар бетін жазықтыққа жазып тастау мүмкін емес. Сондықтан оның анықтамасын шек түсінігін пайдаланып беруге болады.

 

Теорема: Шар бетінің ауданы төрт еселенген үлкен дөңгелектің ауданына тең. Дәлелдеу. Үлкен дөңгелек ауданы S = πR2



 

Проблема: 

3) Шар беті сфераны қалай аламыз? Плакаттан көрсету.

Жауап: Центрі О нүктесі болатын, диаметрі АҒ – ге тең жарты шеңбер берілсе, оны АҒ диаметрінен айналдырсақ шар бетін – сфераны аламыз.

4) Жарты шеңберге қабырғалар саны n-ге тең АВСДЕҒ дұрыс сынық сызықты іштей сызамыз. АҒ – диаметрінен айналдырсақ шыққан бет сфера бетіне шамалас болады. Сынық сызықтар санын арттырсақ, онда жуықтау дәлірек болып сфера бетіне жақындай түседі.

5) Шар бетінің ауданының анықтамасын береміз.

29-анықтама. Жарты шеңберді оның диаметрінен айналдырғанда шығатын шар бетінің ауданы ретінде жарты шеңберге іштей сызылған дұрыс сынық сызықты сол диаметрден сынық сызықтың буындар санын шексіз көбейте отырып айналдырғанда шығатын бет ауданының ұмтылатын шегі алынды.  

6) Сынық сызықты айналдырғанда (конус, қиық конус, цилиндр беттерінен тұрады).

7) Іштей сызылған сынықтың апофемасын а деп белгілейік. Айналу денелерінің бүйір беттерінің аудандарының жалпы формуласы бойынша

Sб.б.= H 2 Па

8) АВ буыны айналғанда шығатын беттің ауданы АК * 2 Па

ВС буыны айналғанда шығатын беттің ауданы KN * 2 Па 

СД буыны айналғанда шығатын беттің ауданы NP * 2 Па

ДЕ буыны айналғанда шығатын беттің ауданы PQ * 2 Па

ЕҒ буыны айналғанда шығатын беттің ауданы QF * 2 Па

9) Осыларды қосып АВСДЕҒ сынығының АҒ осінен айналғанда шығатын беттің ауданын аламыз. 2 Па (АК + KN + NP + PQ + QF) = 2 Па * АҒ

10) Буындар санын шексіз көбейтсек, сынық сызықтың бетінің ауданы, шар бетінің ауданына, ал апофемасы берілген жарты шеңбердің радиусына ұмтылады. Радиусы R десек. АҒ = 2 R.

            Sшар беті = 2 ПR * 2R = 4 ПR2

 

11) АС доғасы АҒ осінен айналғанда шығатын шар сегменті бетінің ауданын есептеу формуласын қорытып шығару.



АВ + ВС +  АК * 2 Па

KN * 2 Па

2 Па (АК + KN) = 2 Па * AN = 2 ПR * h

Sшар сег. = 2 ПRh

 

Сфералық белдіктің ауданын есептеу формуласын табайық. һ = һ2 – һ1шар қабатының сфералық бетін биіктіктері һ1 және һ2 болатын екі сегмент беттерінің айырмасы деп қарастыруға болады. 



Sшар қаб. = 2 ПR (h2 – h1) = 2 ПRh

Sшар қаб. = 2 ПRh

 

Шардың көлемі мен бетінің ауданы туралы Архимед те өз тұжырымын жасаған: Ол «шардың көлемі мен бетінің ауданы, оған сырттай сызылған цилиндрдің көлемі мен толық бетінің ауданының 2/3 бөлігіне тең» деп тұжырымдаған.



 

Сфера және шар олардың бөліктері сфералық геометрия деп аталған. Сфералық геометрия астрономияда кеңінен қолданылады, сонымен қатар теңіз кемелерінің, самолет және космос кораблдерінің штурмандары жұлдыздарға қарап, өз координаталарын анықтайды. Жердің шар тәрізді екенін ескере отырып, шахта, метрополитень, тоннель құрылыстарында және жер шарының бетінің иодезиялық түсірілімдерінде (съемка) кеңінен қолданылады.

 

ІV. Білімдерін бекіту кезеңі.



1) Деңгейлік тапсырмалар парақшаларын тарату.

2) Шар және олардың бөліктерінің аудандарын табуға есептер шығару.

№28. Диаметрі 10 см шар бетінің ауданын табыңдар. 

Sш.б. = 4 ПR2;        R = D = 5 см.      Sш.б. = 4 П 52 = 100 П (см)2

                                     2

№29. Сфера бетінің 3,14 дм2. Оның радиусын тап.

Sш.б. = 4 ПR2;       3,14 = 4 * 3,14 R2;   R2 = 1;  R = 1 (дм)

                                                                      4           2

№30. Диаметрі 6 см бір шар және диаметрі 2 см он екі шар берілген. Олардың қайсысын никельдеуге материал аз кетеді?

S1 ш.б. = 4 ПR2 = 4 * П * 32 = 36 П.   S2 = 12 * 4 Пr2 = 12 * 4 П * 1 = 48 П.    S1<  S2

№31. Кубқа іштей және сырттай сызылған сфералардың аудандарының қатынасын есептеңдер.

 

V. Сабақтың қорытындысы.



1) Оқушылардың білім, білік, дағдыларын, жаңа материалды қаншалықты игергенін, сабаққа белсенділігін, есептеу қабілеттерін хабарлау.

2) Оқушыларды бағалау. Ескертулер айту, егер болса.

 

VI. Үйге тапсырма беру.




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет