Функцияны зерттеу төменгі алгоритм бойынша жүргізіледі:
1) Функцияның анықталу облысын табу;
2) Функцияның тақ, жұптығын анықтау. Егер функция не тақ, не жұп болса, онда ол анықталу облысындағы аргументтің тек оң мәндер аралығында зерттеледі және тақ, жұп функциялардың графигі туралы қасиет пайдаланылады;
3) Функцияның периодтылығын анықтау. Егер функция периодты болса, онда бір период аралығында ғана зерттеледі;
4) Функция графигінің координаталар осімен қиылысу нүктелерін табамыз;
5) Функция графигі абсцисса осімен (-1;0) нүктесінде қиылысады. Онда
(-∞;-1) интервалында f(x)<0, ал (-1;+∞) интервалында f(x)>0.
Функцияның анықталу облысының кез келген мәндері үшін болғанда, теңсіздігі орындалады. Демек, функция барлық нақты сандар жиынында өседі және экстремум нүктелері болмайды;