Семестровое задание №1



бет5/7
Дата17.09.2024
өлшемі284,64 Kb.
#204523
түріКонтрольная работа
1   2   3   4   5   6   7
Байланысты:
referatmix 90924

5 Влияние параметров , , на вид скоростных (механических) характеристик двигателя постоянного тока с параллельным возбуждением. Регулирование скорости вращения двигателя

Регулированием скорости называется целенаправленное принудительное изменение скорости двигателя посредством специального устройства или приспособления, независимо от величины и характера нагрузки, в соответствии с требованиями, предъявляемыми к закону движения рабочего органа механизма. Установленная при регулировании скорость при отсутствии воздействия на регулирующее приспособление в дальнейшем изменяется по механической характеристике электропривода в соответствии с нагрузкой. Регулирование скорости позволяет наиболее рационально использовать производственные механизмы, обеспечить оптимальные режимы их работы и, как правило, уменьшить расход энергии.


Двигатели параллельного возбуждения, питаемые от источника постоянного напряжения, применяются обычно для длительного режима работы, когда требуется широкое регулирование частоты вращения, например для металлообрабатывающих станков, для листоправильных машин в прокатных станах, для главных приводов трубопрокатных станов и т. п.
Выражение скорости вращения двигателя постоянного тока:



показывает, что возможны три принципиально различных способа регулирования угловой скорости двигателя:


1) изменением тока возбуждения (магнитного потока) двигателя;
2) изменением сопротивления цепи якоря посредством резисторов (реостатное);
3) изменением подводимого к якорю двигателя напряжения.
Реостатное регулирование скорости двигателя
Реостатное регулирование скорости электроприводов осуществляется путем изменения активных сопротивлений резисторов, включенных в главные цепи двигателей. При этом для двигателей постоянного тока имеются в виду резисторы, включаемые в цепи обмоток якоря. При регулировании скорости сопротивлением в цепи якоря во всем диапазоне имеем .
Из уравнения:



видно, что включение добавочного сопротивления в цепь якоря позволяет изменять скорость вниз от скорости идеального холостого хода, при этом жесткость механических характеристик резко уменьшается, особенно при больших значениях добавочного сопротивления (рис. 5.1).





Рисунок 5.1 – Схема включения и механические характеристики двигателя постоянного тока параллельного возбуждения при реостатном регулировании скорости

Диапазон реостатного параметрического регулирования тока и момента ограничен сверху перегрузочной способностью двигателя по условиям коммутации, а пределы изменения скорости, в которых можно получить заданную точность регулирования, уменьшаются с ростом статической жесткости. Таким образом при условии МС = const диапазон регулирования обычно не превосходит 1 3.


Потери мощности при реостатном регулировании пропорциональны потребляемой мощности и перепаду угловой скорости, выраженному в относительных единицах. Так, если момент нагрузки постоянен (следовательно, постоянна потребляемая мощность) и угловая скорость двигателя уменьшается вдвое, то примерно половина мощности, потребляемой из сети, будет рассеиваться в виде теплоты, выделяемой в реостате, т. е. данный способ регулирования (реостатный) является не экономичным.
Реостатное регулирование скорости осуществляется простыми и дешевыми техническими средствами и обычно находит применение в тех случаях, когда требования к плавности регулирования невелики, продолжительность работы с пониженной скоростью незначительна и применение более совершенных методов регулирования экономически нецелесообразно (вентиляторы, дымососы).
Регулирование скорости двигателя изменением питающего напряжения
Для реализации рассматриваемого способа регулирования необходимо иметь источник питания, напряжение, на зажимах которого может изменяться в широких пределах. Для электродвигателей постоянного тока в качестве таких источников используются различного рода управляемые преобразователи электрической энергии переменного тока в электрическую энергию постоянного тока. Наиболее широкое применение получили электромашинные и вентильные преобразователи. Регулирование напряжением, так же как и реостатное, осуществляется при постоянном потоке двигателя Ф=Фн=const. Из уравнения



следует, что с изменением осуществляется регулирование только скорости идеального холостого хода





тогда как жесткость механических характеристик при неизменных параметрах цепи якоря сохраняется. При этом механические характеристики представляют собой семейство параллельных друг другу прямых, т. е. имеют одинаковую жесткость (как показано на рис. 5.2), что определяет относительно высокую стабильность угловой скорости.





Рисунок 5.2 – Механические характеристики двигателя при изменении питающего напряжения ( )

Диапазон регулирования в системах привода без обратных связей ограничивается значением (8 10):1, а в замкнутых системах может достигать значений 1000:1 и более.


Модуль жесткости механических искусственных характеристик меньше, чем модуль жесткости естественной характеристики. Однако по сравнению с реостатным регулированием при регулировании в зоне низких скоростей модуль жесткости характеристик оказывается значительно большим, что дает возможность существенно расширить диапазон регулирования скорости.
Регулирование угловой скорости осуществляется вниз от основной, так как напряжение, прикладываемое к якорю, в большинстве случаев может изменяться только вниз от номинального (иногда, например, при регулировании угловой скорости двигателя с постоянными магнитами возможно регулирование как вниз, так и вверх от основной скорости — двухзонное).
Оценив технические и экономические показатели параметрического регулирования скорости изменением напряжения, можно прийти к выводу, что высокие технические показатели регулирования скорости покупаются ценой значительного увеличения габаритов и стоимости электропривода. Дополнительные затраты, связанные с введением управляемого преобразователя, полностью окупаются высокой управляемостью системы, обеспечивающей возможность эффективного автоматического управления всеми режимами работы электропривода и точного автоматического регулирования его координат.
Регулирование скорости двигателя изменением потока возбуждения
Этот принцип регулирования следует непосредственно из анализа выражений для скоростной и механической характеристики:




Ток возбуждения, а значит, и поток могут изменяться лишь в сторону уменьшения по сравнению с номинальными, так как по условиям нормальной работы обмотки возбуждения ток в ней не может длительно превосходить номинальную величину. Кроме того, даже кратковременное увеличение оказывается неэффективным, так как в большинстве случаев магнитные цепи электрических машин уже при номинальном потоке близки и насыщению. Следовательно, речь идет лишь о регулировании скорости путем снижения потока или, как принято говорить, путем ослабления потока возбуждения. Основным достоинством рассматриваемого метода регулирования является то, что мощность обмотки возбуждения невелика и составляет, как правило, 2 5% мощности двигателя. Для машин малой, а иногда и средней мощности обычно используются резисторы в цепи возбуждения (рис. 5.3,а), а для крупных машин — специальные преобразователи, например генераторы, электромашинные усилители, магнитные усилители, регуляторы напряжения, вентильные преобразователи (рис. 5.3,б).





Рисунок 5.3 – Схемы включения двигателя при регулировании скорости изменением магнитного потока

Из равенства





следует, что для того, чтобы при разных потоках эдс была равна одному и тому же номинальному напряжению сети , частота вращения должна увеличиваться обратно пропорционально ослаблению потока. Например, если поток ослаблен вдвое, то частота вращения должна увеличиться также вдвое и т. д.


Электромеханическим характеристикам при изменении тока возбуждения соответствуют различные значения угловой скорости идеального холостого хода, определяемые по:



На рис. 5.4 по оси ординат отложено значение угловой скорости идеального холостого хода для естественной характеристики, когда поток .


Значения угловых скоростей идеального холостого хода при ослабленном потоке и лежат, очевидно, выше .



Рисунок 5.4 – Электромеханические и механические характеристики двигателя постоянного тока параллельного возбуждения при регулировании угловой скорости током возбуждения

Все электромеханические характеристики пересекаются с осью абсцисс в одной точке. Последнее следует из того, что при уравнение для любой электромеханической характеристики имеет вид:





откуда определяется ток в якоре двигателя




.

Следовательно, при различных токах возбуждения и при угловой скорости двигателя, равной нулю, ток в якорной цепи равен току короткого замыкания двигателя. Этим значением тока и определяется общая точка пересечения электромеханических характеристик.


Механические характеристики, показанные на рис. 5.4, имеют те же значения угловых скоростей идеального холостого хода, что и для электромеханических характеристик. Это следует из . Однако эти характеристики не пересекаются в одной точке на оси абсцисс, так как по мере уменьшения потока уменьшается и момент короткого замыкания, определяемый по формуле:



Диапазон регулирования ограничивается различными факторами. Главным из них является ухудшение условий коммутации с возрастанием угловой скорости, поскольку реактивная ЭДС, вызывающая искрение на коллекторе пропорциональна току и угловой скорости, т. е. . Кроме того, при больших угловых скоростях требуется повышать механическую прочность якоря. Нижний предел угловой скорости ограничивается степенью насыщения машины и нагревом обмотки возбуждения, т. е. номинальной угловой скоростью. Большинство двигателей независимого возбуждения, не предназначенных для регулирования скорости, и допускают повышение ее только на 10 20%. Двигатели, специально сконструированные для работы с регулированием скорости, дают возможность работать со скоростью, в 3 5 раз превышающей скорость идеального холостого хода при номинальном значении магнитного потока.


Стабильность угловой скорости при регулировании определяется относительным перепадом угловой скорости при изменении нагрузки. В данном случае при номинальном токе якоря как , поэтому независимо от тока возбуждения относительный перепад сохраняется одним и тем же для естественной и искусственной характеристик, т. е. угловая скорость сравнительно стабильна.
Следует отметить, что ослабление потока однозначно приводит к росту скорости только в том случае, когда момент нагрузки на валу двигателя обратно пропорционален скорости. Если же = const, то увеличение скорости будет иметь место лишь до определенного значении . При дальнейшем снижении потока начнется и снижение угловой скорости, так как в случае = const ослабление потока приводит к увеличению тока якоря , а значит, и к увеличению падения напряжения на сопротивлениях цепи якоря. Начиная с некоторого значения потока в процессе его снижения рост скорости идеального холостого хода идет медленнее, чем уменьшается скорость, обусловленная падением напряжения на .
Оценивая энергетические показатели данного способа регулирования скорости двигателей постоянного тока с параллельным возбуждением, необходимо отметить, что потери в силовой цепи двигателя и его кпд такие же, как и при работе на естественной характеристике. Следует также учитывать, что в связи с относительно малой мощностью цепи обмотки возбуждения по сравнению с номинальной мощностью двигателя затраты на регулировочные устройства (реостаты или преобразователи в цепи обмотки возбуждения) невелики.
Двигатели независимого возбуждения, регулируемые путем ослабления потока, широко применяются для привода механизмов, мощность которых с изменением скорости остается постоянной.




Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет