Следовательно



бет3/3
Дата05.06.2022
өлшемі253,99 Kb.
#146010
1   2   3
Байланысты:
типовой дифуры 22в

Ответ: .
7. . Линейное неоднородное уравнение третьего порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение , или , имеет три корня: . Получаем четыре частных решений: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Здесь множитель х обусловлен тем, что корень характеристического уравнения r=0 совпадает с коэффициентом α в экспоненте eαx, «стоящей» в правой части уравнения (α=0). Найдём производные yчн:: . Подставим это в исходное уравнение: . Отсюда находим . Или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Ответ: .
8. . Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Найдём производные yчн:: . Подставим это в исходное уравнение: . Отсюда находим или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Воспользуемся начальными условиями: . По первому условию . Найдём . Тогда, по второму условию, . Решая систему уранений, получим: . Частное решение уравнения будет . Ответ: .
9. . Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Найдём производные yчн::
, . Подставим это в исходное уравнение:
. Приравнивая коэффициенты при одинаковых функциях в левой и правой частях равенства, получим: . Или: . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: .
Ответ: . Примечание: ответ, совпадающий с ответом в методичке, получится, если в правой части взять не 34, а 24. Повидимому имеет место ошибка при наборе условия задачи.
10. Решить систему линейных однородных дифференциальных уравнений первого порядка с постоянными коэффициентами , где - функции от t, M – матрица коэффициентов, при начальных условиях :
.
Запишем систему по исходным данным:
. Ищем решение в виде . Тогда . Подставляя это в систему, получим систему алгебраических уравнений, которая определяет неизвестные коэффициенты : . Приравнивая определитель системы к нулю, получим характеристическое уравнение исходной системы: . Раскроем определитель: . Или . Следовательно, . При получим систему: . Отбросим первое уравнение, как линейно зависимое. Получим . Положим . Тогда . Получили первое частное решение: . При получим систему: . Отбросим третье уравнение, как линейно зависимое. Получим . Положим . Тогда . Получили второе частное решение: .
При получим систему: . Отбросим третье уравнение, как линейно зависимое. Получим или . Положим . Тогда . Получили третье частное решение: . Общее решение записывается как линейная комбинация частных решений: . Найдём произвольные постоянные, пользуясь начальными условиями. При t=0 получим систему: . Сложим второе уравнение с третьим, затем умножим третье уравнение на 2 и сложим с первым. Получим: . Тогда . Таким образом, частное решение системы следующее: . Ответ: .

Достарыңызбен бөлісу:
1   2   3




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет