Тема основные термодинамические понятия и законы


Изменение энтропии в обратимых и необратимых процессах



бет21/36
Дата21.11.2022
өлшемі0,78 Mb.
#159099
түріЗакон
1   ...   17   18   19   20   21   22   23   24   ...   36
Байланысты:
Лекции по теплотехнике
Решение задач 1
5.6.Изменение энтропии в обратимых и необратимых процессах
Рассмотрим изменение энтропии в обратимых термодинамических процессах. Для таких процессов . Отсюда следует, что в обратимых процессах энтропия может как возрастать, так и убывать. Температура является положительной величиной. Поэтому при подводе теплоты к системе (dq>0) отношение dq/T, равное ds, будет больше нуля. Следовательно, в этом случае энтропия системы возрастает. Если же теплота отводится от системы (dq<0), то ds<0 и энтропия убывает.
Интегрируя уравнение для ds в пределах от начального состояния 1 до конечного 2, найдем, что энтропия рабочего тела изменится на величину



(5.13)


В обратимом адиабатном процессе dq=0. Поэтому из (5.13) имеем s2—s1=0 и s2=s1, то есть в обратимом адиабатном процессе энтропия постоянна (s=const).


Рассмотрим теперь, как изменяется энтропия в необратимых процессах. Пусть какой-либо произвольный цикл состоит из двух процессов: необратимого 1—а—2 и обратимого 2—b—1 (рис. 5.5). Такой цикл является необратимым. Выражение (5.12) для него будет иметь вид



(5.14)


Для обратимого процесса 2—b—1, согласно (5.13), имеем





(5.15)


Тогда выражение (5.14) запишется в виде





(5.16)


или








то есть в необратимом процессе значение интеграла меньше, чем изме­нение энтропии в конечном и начальном состояниях.


В дифференциальной форме выражение (5.16) имеет вид

,










Рис. 5.5. Необратимый цикл, который состоит из необратимого 1-a-2 и обратимого 2-b-1 циклов

или




(5.17)


Так же, как и (5.12), формула (5.17) представляет собой уравнение второго закона термодинамики для необратимых процессов. В общем случае для обратимых и необратимых процессов с учетом уравнений (5.8), (5.12) и (5.9), (5.17) можно записать



(5.18)

и




(5.19)






(5.20)


В приведенных выражениях знак равенства относится к обратимым, а знак неравенства — к необратимым процессам.




Тема 6.ВОДЯНОЙ ПАР


6.1.Основные понятия и определения
Известно, что любое вещество в зависимости от внешних условий (давления и температуры) может находиться в газообразном, жидком и твердом агрегатных состояниях, или фазах, а также одновременно находиться в двух или трех состояниях.
Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, или фазовым превращением. Вещество в разных агрегатных состояниях имеет различные свойства, в частности плотность. Это различие объясняется характером межмолекулярного взаимодействия.
Переход вещества из твердого состояния в жидкое называется плавлением, из жидкого в газообразное — испарением, из твердого в газообразное — сублимацией. Обратные процессы соответственно называются затвердеванием, или кристаллизацией, конденсацией и де-сублимацией.
Процесс получения пара из жидкости может осуществляться испарением и кипением. Испарением называется парообразование, происходящее только со свободной поверхности жидкости и при любой температуре.
Кипением называется бурное парообразование по всей массе жидкости, которое происходит при сообщении жидкости через стенку сосуда определенного количества теплоты. При этом образовавшиеся у стенок сосуда и внутри жидкости пузырьки пара, увеличиваясь в объеме, поднимаются на поверхность жидкости.
Процесс парообразования начинается при достижении жидкостью температуры кипения, которая называется температурой насыщения tн и на протяжении всего процесса остается неизменной. Температура кипения, или температура насыщения, tн зависит от природы вещества и давления, причем с повышением давления tн увеличивается. Давление, соответствующее tн называется давлением насыщения рн.
Насыщенным паром называют пар, который образовался в процессе кипения и находится в динамическом равновесии с жидкостью. Насыщенный пар по своему состоянию бывает сухим насыщенным и влажным насыщенным.
Сухой насыщенный пар представляет собой пар, не содержащий капель жидкости и имеющий температуру насыщения (t=tн) при данном давлении.
Влажный насыщенный пар – это равновесная смесь, состоящая из капель жидкости, находящейся при температуре кипения, и сухого насыщенного пара.
Отношение массы сухого насыщенного пара mс.п. к массе влажного насыщенного пара mв.п. называется степенью сухости х влажного пара, то есть







Очевидно, что для жидкости х=0, для сухого насыщенного пара х=1.


Если к сухому насыщенному пару продолжать подводить теплоту, то его температура увеличится. Пар, температура которого при данном давлении больше, чем температура насыщения (t>tн), называется перегретым. Другими словами говоря перегретый пар – это пар, находящийся при температуре, превышающей температуру кипения жидкости при давлении, равном давлению перегретого пара. Величина превышения температурой пара температуры кипения жидкости называется степенью перегрева пара.
Водяной пар является реальным рабочим телом и может находиться в трёх состояниях: влажного насыщения, сухого насыщения и в перегретом состоянии. Для технических нужд водяной пар получают в паровых котлах (парогенераторах), где специально поддерживается постоянное давление.




Достарыңызбен бөлісу:
1   ...   17   18   19   20   21   22   23   24   ...   36




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет