Грек ғалымы Пифагордың қысқаша өмірбаяны мен математика дамуына қосқан Пифагор
Б.э.д. 569 – 475ж
Грек ғалымы Пифагор матиматикаға негізделетін құпия ілімнің негізін қалады. Ол сандардың барлық нәрсе екенін және математиканың көмегімен кез келген құбылысты түсіндіруге болатынын дәлелдеген. Мысалы, ол музыкалық аспаптың табиғи көлемінің жартысына тең музыкалық ішек кесіндісінің бір октаваға жоғары дыбыс шығаруға мүмкіндік туғызатынын ашқан. Пифагор жердің шар тәріздес екенін бірінші ұққан және дұрыс ұшбұрыштардың әйгілі теоремасын дәлелдеген. Ол сондай-ақ нысанын өзгеруге сенген және тамаққа бұршақтарды салуға тыйым салған. Пифагор сандары – натурал сандар үштігі, бұл сандар ұшбұрыш қабырғаларының ұзындығына пропорционал (немесе тең) болса, онда ұшбұрыш тіктөртбұрышты болып табылады. Бұл үшін Пифагордың кері теоремасы бойынша ол сандардың x² + y² = z² түріндегі диофант теңдеуін қанағаттандыруы жеткілікті (мыс., x = 3, y = 4, z = 5) өзара жай Пифагор сандарының кез келген үштігі мына формулалар арқылы анықталады: x² = m² - n², y = 2mn, z = m² + n², мұндағы m және n – бүтін сандар (m > n > 0).
Ғылымның математикалануы. Кибернетика. Информатика. Қолданбалы математиканың даму тарихы туралы
Грек ғалымы Демокриттің қысқаша өмірбаяны мен математика дамуына қосқан еңбектері.
Грек алфавитіндегі δ,θ,γ,π әріптерінің бас әрпі мен оқылуын көрсетіңіз
Дифференциалдық және интегралдық есептеулерді ашқан ғалымдар: Ньютон, Лейбниц. 17 ғасырдың аяғына таман И. Ньютон мен Г. Лейбниц еңбектерінде дәл мағынасындағы дифференциалдық және интегралдық есептеулердің негізі қаланды. Олар алғаш рет жаңа есептеудің негізгі амалдары дифференциалдау мен интегралдауды жалпы түрде қарастырып, олардың өзара байланысын тағайындады ( Ньютон- Лейбниц формуласы). Алайда Ньютон мен Лейбниц бұл мәселеге қатысы әр түрлі көзқараста болды. Ньютон үшін бастапқы ұғымдар- механикалық есептерден келген « флюента» (айнымалы шама) және оның « флюксиясы» (айнымалы шаманың өзгеру жылдамдығы). Флюксияларды және флюенталар бойынша флюнсиялар арасындағы қатыстарды ( дифференциалдау және дифференциалдық теңдеулер құру) табуды көздеген тура есепке Ньютон флюнсиялар арасындағы қатыстар бойынша флюенталарды табу жайлы кері еспті, былайша айтқанда дифференциалдық теңдеулерді интегралдаудың жалпы есебін қарсы қойды. Лейбниц болса әсіресе шекті шамалар алгебрасынан шексіз аз шамалар алгебрасына көшуге көп көңіл болды, ол интегралды ең әуелі саны шексіз көп шексіз аз шамалардың қосындысы ретінде, ал дифференциалдық есептеулердің негізгі ұғымын айнымалы шамалардың шексіз өсімшесі түрінде қарастырды. Бұл саладағы идеяларды Я. Бернулли, И. Бернулли, француз математигі Г. Лопиталь т.б. одан әрі дамытты. Аналитикалық геометриядан басқа алгебра мен анализге тығыз байланысты дифференциалдық геометрия да дамыды. 17 ғасырда проективтік геометрияның да негізгі ұғымдары қалыптаса бастады. Бұл ғасырдағы математиканың басқа жетістіктерінің қатарына сандар теориясы жөніндегі Б. Паскаль мен П. Ферма зерттеулерін, комбинаториканың негізгі ұғымдарының жасалуын, ықтималдықтар теориясы жайлы алғашқы жұмыстарды атауға болады.