Тема 1 Изучение современных методов сжатия информации без потерь Сжа́тие да́нных



бет1/4
Дата24.02.2020
өлшемі237 Kb.
#58989
  1   2   3   4
Байланысты:
Прикладная теория информации - 579551

Тема 1 Изучение современных методов сжатия информации без потерь

Сжа́тие да́нных (англ. data compression) — алгоритмическое преобразование данных, производимое с целью уменьшения занимаемого ими объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данныхкомпрессиясжимающее кодированиекодирование источника. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией).

Сжатие основано на устранении избыточности, содержащейся в исходных данных. Простейшим примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности ссылкой на уже закодированный фрагмент с указанием его длины. Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других. Сокращение объёма данных достигается за счёт замены часто встречающихся данных короткими кодовыми словами, а редких — длинными (энтропийное кодирование). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или белый шум, зашифрованные сообщения), принципиально невозможно без потерь.

Сжатие без потерь позволяет полностью восстановить исходное сообщение, так как не уменьшает в нем количество информации, несмотря на уменьшение длины. Такая возможность возникает только если распределение вероятностей на множестве сообщений не равномерное, например часть теоретически возможных в прежней кодировке сообщений на практике не встречается.

В основе любого способа сжатия лежит модель источника данных, или, точнее, модель избыточности. Иными словами, для сжатия данных используются некоторые априорные сведения о том, какого рода данные сжимаются. Не обладая такими сведениями об источнике, невозможно сделать никаких предположений о преобразовании, которое позволило бы уменьшить объём сообщения. Модель избыточности может быть статической, неизменной для всего сжимаемого сообщения, либо строиться или параметризоваться на этапе сжатия (и восстановления). Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспециализированные алгоритмы, применяемые для работы с данными, обладающими хорошо определёнными и неизменными характеристиками. Подавляющая часть достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Все методы сжатия данных делятся на два основных класса:


  • Сжатие без потерь

  • Сжатие с потерями

При использовании сжатия без потерь возможно полное восстановление исходных данных, сжатие с потерями позволяет восстановить данные с искажениями, обычно несущественными с точки зрения дальнейшего использования восстановленных данных. Сжатие без потерь обычно используется для передачи и хранения текстовых данных, компьютерных программ, реже — для сокращения объёма аудио- и видеоданныхцифровых фотографий и т. п., в случаях, когда искажения недопустимы или нежелательны. Сжатие с потерями, обладающее значительно большей, чем сжатие без потерь, эффективностью, обычно применяется для сокращения объёма аудио- и видеоданных и цифровых фотографий в тех случаях, когда такое сокращение является приоритетным, а полное соответствие исходных и восстановленных данных не требуется.

В 1995 инженером-электроником Ромке Яном Бернхардом Слоотом был предложен алгоритм сжатия фильмов, который был утерян


Современные пользователи довольно часто сталкиваются с проблемой нехватки свободного пространства на жестком диске. Многие, в попытке освободить хоть немного свободного пространства, пытаются удалить с жесткого диска всю ненужную информацию. Более продвинутые пользователи используют для уменьшения объема данных особые алгоритмы сжатия. Несмотря на эффективность этого процесса, многие пользователи никогда о нем даже не слышали. Давайте же попробуем разобраться, что подразумевается под сжатием данных, какие алгоритмы для этого могут использоваться. На сегодняшний день сжатие информации является достаточно важной процедурой, которая необходима каждому пользователю ПК. Сегодня любой пользователь может позволить себе приобрести современный накопитель данных, в котором предусмотрена возможность использования большого объема памяти. Подобные устройства, как правило, оснащаются высокоскоростными каналами для транслирования информации. Однако, стоит отметить, что с каждым годом объем необходимой пользователям информации становится все больше и больше. Всего 10 лет назад объем стандартного видеофильма не превышал 700 Мб. В настоящее время объем фильмов в HD-качестве может достигать нескольких десятков гигабайт.
Не стоит многого ждать от процесса сжатия информации. Но все-таки встречаются ситуации, в которых сжатие информации бывает просто необходимым и крайне полезным. Рассмотрим некоторые из таких случаев. Передача по электронной почте. Очень часто бывают ситуации, когда нужно переслать большой объем данных по электронной почте. Благодаря сжатию можно существенно уменьшить размер передаваемых файлов. Особенно оценят преимущества данной процедуры те пользователи, которые используют для пересылки информации мобильные устройства. Публикация данных на интернет-сайтах и порталах. Процедура сжатия часто используется для уменьшения объема документов, используемых для публикации на различных интернет-ресурсах. Это позволяет значительно сэкономить на трафике. Экономия свободного места на диске. Когда нет возможности добавить в систему новые средства для хранения информации, можно использовать процедуру сжатия для экономии свободного пространства на диске. Бывает так, что бюджет пользователя крайне ограничен, а свободного пространства на жестком диске не хватает. Вот тут-то на помощь и приходит процедура сжатия.
Кроме перечисленных выше ситуаций, возможно еще огромное количество случаев, в которых процесс сжатия данных может оказаться очень полезным. Мы перечислили только самые распространенные. Способы сжатия информации Все существующие способы сжатия информации можно разделить на две основные категории. Это сжатие без потерь и сжатие с определенными потерями. Первая категория актуальна только тогда, когда есть необходимость восстановить данные с высокой точностью, не потеряв ни одного бита исходной информации. Единственный случай, в котором необходимо использовать именно этот подход, это сжатие текстовых документов. В том случае, если нет особой необходимости в максимально точном восстановлении сжатой информации, необходимо предусмотреть возможность использования алгоритмов с определенными потерями при сжатии. Сжатие без потери информации Данные методы сжатия информации интересуют прежде всего, так как именно они применяются при передаче больших объемов информации по электронной почте, при выдаче выполненной работы заказчику или при создании резервных копий информации, хранящейся на компьютере. Эти методы сжатия информации не допускают потерю информации, поскольку в их основу положено лишь устранение ее избыточности, информация же имеет избыточность практически всегда, если бы последней не было, нечего было бы и сжимать.

Тема 2 Изучение современных методов сжатия информации с потерями

Еще вчера казалось, что диск размером в один гигабайт — это так много, что даже неясно, чем его заполнить, и уж конечно, каждый про себя думал: был бы у меня гигабайт памяти, я бы перестал «жадничать» и сжимать свою информацию какими-то архиваторами. Но, видимо, мир так устроен, что «свято место пусто не бывает», и как только у нас появляется лишний гигабайт — тут же находится чем его заполнить. Да и сами программы, как известно, становятся все более объемными. Так что, видимо, с терабайтами и экзабайтами будет то же самое.

Поэтому, как бы ни росли объемы памяти диска, упаковывать информацию, похоже, не перестанут. Наоборот, по мере того как «места в компьютере» становится все больше, число новых архиваторов увеличивается, при этом их разработчики не просто соревнуются в удобстве интерфейсов, а в первую очередь стремятся упаковать информацию все плотнее и плотнее.

Однако очевидно, что процесс этот не бесконечен. Где лежит этот предел, какие архиваторы доступны сегодня, по каким параметрам они конкурируют между собой, где найти свежий архиватор — вот далеко не полный перечень вопросов, которые освещаются в данной статье. Помимо рассмотрения теоретических вопросов мы сделали подборку архиваторов, которые можно загрузить с нашего диска, чтобы самим убедиться в эффективности той или иной программы и выбрать из них оптимальную — в зависимости от специфики решаемых вами задач.


Совсем немного теории для непрофессионалов


Позволю себе начать эту весьма серьезную тему со старой шутки. Беседуют два пенсионера:

— Вы не могли бы сказать мне номер вашего телефона? — говорит один.

— Вы знаете, — признается второй, — я, к сожалению, точно его не помню.

— Какая жалость, — сокрушается первый, — ну скажите хотя бы приблизительно…

Действительно, ответ поражает своей нелепостью. Совершенно очевидно, что в семизначном наборе цифр достаточно ошибиться в одном символе, чтобы остальная информация стала абсолютно бесполезной. Однако представим себе, что тот же самый телефон написан словами русского языка и, скажем, при передаче этого текста часть букв потеряна — что произойдет в подобном случае? Для наглядности рассмотрим себе конкретный пример: телефонный номер 233 34 44.

Соответственно запись «Двсти трцать три трицть четре сорк чтре», в которой имеется не один, а несколько пропущенных символов, по-прежнему легко читается. Это связано с тем, что наш язык имеет определенную избыточность, которая, с одной стороны, увеличивает длину записи, а с другой — повышает надежность ее передачи. Объясняется это тем, что вероятность появления каждого последующего символа в цифровой записи телефона одинакова, в то время как в тексте, записанном словами русского языка, это не так. Очевидно, например, что твердый знак в русском языке появляется значительно реже, чем, например, буква «а». Более того, некоторые сочетания букв более вероятны, чем другие, а такие, как два твердых знака подряд, невозможны в принципе, и так далее. Зная, какова вероятность появления какой-либо буквы в тексте, и сравнив ее с максимальной, можно установить, насколько экономичен данный способ кодирования (в нашем случае — русский язык).

Еще одно очевидное замечание можно сделать, вернувшись к примеру с телефоном. Для того чтобы запомнить номер, мы часто ищем закономерности в наборе цифр, что, в принципе, также является попыткой сжатия данных. Вполне логично запомнить вышеупомянутый телефон как «два, три тройки, три четверки».



Достарыңызбен бөлісу:
  1   2   3   4




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет