1 билет Математика тарихы мен методологиясы пәні мақсаты және міндеті


XIX-ХХ ғғ. –дағы математиканың жаңа бағыттары



бет18/53
Дата27.03.2023
өлшемі172,71 Kb.
#173067
1   ...   14   15   16   17   18   19   20   21   ...   53
Байланысты:
аяу маттарих (копия)

2. XIX-ХХ ғғ. –дағы математиканың жаңа бағыттары.
19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді.Теориялық математиканың зерттеулер нәтижесін практика жүзінде қолдану шешілуге тиісті есепке ( мәселеге) сан түрінде жауап алуды талап етеді. Осыған байланысты 19-20 ғасырларда математикадағы сандық әдістер оның дербес бір тармағына айналды. Көп еңбек тілейтін есептеуді қажет ететін мәселелерді шешуді жеңілдету, жеделдету ісі әуелі механика-математикалық машиналар мен аспаптарды, ал 20 ғасырдың 40 жылдарынан бастап тез әрекетті электрондық есептеуіш машиналарды талап етті. 19-20 ғасырларда дамытылған математиканың бір тармағы математикалық логика басқару туралы ғылым- кибернетикада және есептеу техникасында қолданыла бастады. Есептеу техникасының кең қолданылуына байланысты программалау теориясы пайда болды.
19 ғасырдың 2- жартысынан бастап математика тарихын қарастыру жедел қолға алынды. 20 ғасырдың 50 жылдарынан бастап математика ғылымының басқару теориясы, кибернетика, алгебралық геометрия, информация теориясы т.б. көптеген жаңа салалары пайда болды. Математиканың осылай қауырт дамуына жаратылыс тану ғылымдары ментехниканың математика алдына қойып отырған талаптары түрткі болды. Мысалы, өндірістік процесті автоматтандыру басқарудың математикалық теориясының тууына себепкер болды.
.
3. Москвалық папирустан бір есеп көрсетіңіз.
13 билет



  1. Ислам математикасы ерекшелігі.

Орта ғасырдағы Орта Шығыс, Солтүстік Африка және Испания сынды мұсылман мемлекеттеріндегі араб жазуы арқылы жазылған математикалық шығармаларды айтады. Араб математикасының дамуына арабтар ғана емес, парсылар, сүриянилер, т.б. үлес қосты. Бұл шығармалар қолжазба түрінде осы күнге жеткен, олар әлемнің әр түкпіріндегі кітапханаларда сақтаулы тұр.
Араб математикасының дамуы орта ғасырдағы араб мәдениетінің дамуымен бірге дамыды. Оның дамуын үлкен жақтан үш кезеңге бөліп қарауға болады: 8 ғ. бастап 9 ғ-дың ортасына дейін әл-Мансұр халиф Бағдатта ішінде телескоп пен кітапханасы бар «Даналық үйін» (арабша: بيت الحكمة Bait al-Hikma) ашып, оған сол кездегі Сүрия, Үндістан т. б мемлекеттерден ғалымдарды жинайды, бұл кезең негізінен басқа тілдегі математикалық шығармаларды аударып, оны үйрету кезеңі деп айтуға болады. Ең алдымен Евклидтің «Геометрияның бастамалары», одан кейін үнді математигі Брахмагупта еңбегі араб тіліне аударылады. Содан бастап Архимед, Аполлониус, Диофант, Птолемей сынды ертедегі гректің ұлы математиктерінің шығармалары іркес-тіркес араб тіліне аударылды. Бұл дәуірдегі атақты математик әл-Хорезми болды. Ол тек аудармамен айналысып қана қоймай, сонымен бірге «Хорезми арифметикасы» (көптеген кітаптарда «Liber Algoritmi» деп аталынып жұр), «Әл-жәбр уә-л-Мұқабала» т. б атты атақты кітаптары бар. Қазіргі кездегі математиканың маңызды бір саласы болып табылатын алгебраны осы әл-Хорезми енгізген.
IX-ғасырдың ортасынан XIII ғ-ға дейін араб математикасының гүлдену дәуірі деп қарауға болады. Осы кезеңде Бағдадта, Бұхара, Қаһира және Испанияның Кордова және Толедо қалаларында көптеген ғылыми зерттеу орталықтары пайда болды, бұл дәуірдегі атақты математиктерден Батани, Әбу-Уафа, Карачи, әл-Бируни, Омар Хайям, Насыреддин Туси, Банналарды атауға болады. XIV ғ-дан соң XV ғасырдағы Әмір Темірдің Самарқандтағы телескоп мен сонда зерттеумен айналысқан әл-Кашиды айтпағанда, бүкіл араб математикасының құлдыраған кезеңі болып табылады.
Араб математикасының негізгі жетістіктерінен, арифметика жағында: ондық санау жүйесі, жазбаша есеп (бұл екеуіне Үндістанның тигізген әсері бар), дәрежеге көтеру, біріз қатарлардың қосындысын табу формуласы, т. б. Ал алгебра жағында: бірінші және екінші дәрежелі теңдеулерді шешу, үшінші дәрежелі теңдеудің геометриялық шешу әдісі, екімүшеліктің жіктелуіндегі коэфициенттері т. б; геометрия жағынан: Евклидтің «геометрияның алғашқы кітабының» аудармасы, парралелдік туралы аксиоманың тереңдей зеріттелуі, π санының мәні (әл-Каши 16-орынға дейін дұрыс есептеген) т. б; тригонометрия саласы да ертедегі грек пен үндіге қарағанда анағұрлым толық зерттелген.
12 ғ-дан бастап, араб математикасы Солтүстік Африкадағы Жерорта теңізі жағалау арқылы өтетін мәдени жолдары арқылы Испания мен Еуропаға тараған. Әсіресе ондық санау жүйесі мен жазбаша есеп, Евклидтің «Геометрия бастамалары» кітабының аударма нұсқасы т. б. бұлар бүкіл Еуропаның, тіпті дүние жүзінің математикасының дамуына орасан зор ықпал еткен.
Бірак, араб математикасының керемет туындылары латын тіліне аударылып Еуропаға тарамаған, тек 19-ғасырдан кейін араб математикасы реттеліп бір жүйеге келтіріле бастаған. Араб математикасы ертедегі гректің, Үндістанның, Қытайдың, Шығыс пен Батыстың математикалық жетістіктерін пайдаланып және оларды бір қалыпқа түсіріп Еуропаға таратқандықтан мәдениеттің қайта гүлденуі кезеңінде математика керемет дамыды, сондықтан да араб математикасы әлемдік математика тарихында ойып тұрып орын алады
.


Достарыңызбен бөлісу:
1   ...   14   15   16   17   18   19   20   21   ...   53




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет