Глава 4
ЛИТИЙ-ИОННЫЕ И ЛИТИЙ-ПОЛИМЕРНЫЕ АККУМУЛЯТОРНЫЕ БАТАРЕИ
Серия
|
Срок службы, не менее, лет
|
Наличие уравнителя
|
Напряжение заряда при работе в буферном режиме, В
|
Напряжение заряда при работе в циклическом режиме, В
|
Примечание
|
6-GFM
|
5
|
нет
|
13,44
|
14,1
|
Батарея из 6 элем
|
6-GFM(C)
|
10
|
нет
|
13,44
|
14,1
|
Батарея из 6 элем
|
GFM(Z)
|
15
|
да
|
2,25
|
2,37
|
Аккумулятор
|
В батареях COSLIGHT серии GFM(Z) впервые применены уравнители зарядного напряжения. Как было отмечено выше, одной из главных причин выхода аккумуляторной батареи из строя, особенно по мере ее старения, являются различия в характеристиках ее элементов, которые по мере старения становятся еще ярче выраженными. Для выравнивания зарядного напряжения на элементах батареи используется специальная электронная схема, которая обеспечивает мониторинг напряжения на них. Если оно превысит значение 2,19 В (при температуре 25 °С), схема включит шунт для данного элемента. В результате лишняя энергия будет рассеиваться на резисторах шунта в виде тепла. Однако назвать это решение эффективным нельзя: «подсаживать» исправные элементы в угоду неисправным — не луч шее решение, скорее рекламный трюк, рассчитанный на недостаточно подготовленный персонал.
4.1. Особенности устройства литий-ионных аккумуляторных батарей
Первые эксперименты с литиевыми батареями были начаты еще в 1912 г. группой ученых под руководством Дж. Н. Льюиса (G.N. Lewis), но только в начале 1970-х годов появились первые неперезаряжаемые литиевые батареи. Попытки разработать литиевые аккумуляторные батареи вплоть до 1980-х годов заканчивались неудачами. Это было связано с проблемами их безопасности.
Литий — самый легкий из металлов. Он имеет превосходный электрохимический потенциал и обеспечивает наилучшую энергетическую плотность на единицу массы. В литиевых аккумуляторных батареях применялись отрицательные пластины из металлического лития. Такие батареи обладали более высоким напряжением на каждом элементе и высокой емкостью по сравнению с батареями других типов.
После многочисленных испытаний в течение 1980-х годов выяснилось, что проблема литиевых батарей «закручена» вокруг литиевых электродов. Точнее, вокруг активности лития: процессы, происходившие при старении и износе электродов, в конце концов, нарушали температурную стабильность химических процессов, происходивших внутри аккумуляторной батареи. В результате температура элемента достигала точки плавления лития, и происходила бурная реакция, получившая название «вентиляция с выбросом пламени». В 1991 г. на заводы-изготовители было отозвано большое количество литиевых батарей, которые впервые применили в качестве источника питания мобильных телефонов. Причина — при разговоре, когда потребляемый ток мак-
90
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
91
симален, из аккумуляторной батареи происходил выброс пламе- | ни, обжигавшего лицо пользователю мобильного телефона.
Из-за присущей металлическому литию нестабильности, особенно в процессе заряда, исследования сдвинулись в область создания аккумуляторной батареи без его применения, но с использованием его ионов. Хотя литий-ионные батареи обеспечивают незначительно меньшую энергетическую плотность, чем литиевые батареи, тем не менее они безопасны при соблюдении правильных режимов заряда и разряда.
В 1991 г. компания Sony первой в мире начала коммерческий выпуск литий-ионных аккумуляторных батарей. За ней последовали и другие компании. В настоящее время производство литий-ионных аккумуляторных батарей представляет собой быстрорастущий и многообещающий сегмент рынка.
Энергетическая плотность литий-ионных батарей в два раза : превышает энергетическую плотность стандартных никель-кадмиевых батарей. Совершенствование, достигаемое подбором ак- тивных материалов электродов, в перспективе позволит увеличить это соотношение до трех раз.
Кроме высокой емкости, литий-ионные батареи обладают хорошими нагрузочными характеристиками, похожими на нагрузочные характеристики никель-кадмиевых батарей. Они нетребовательны к обслуживанию настолько, что такая простота в обслуживании недостижима для батарей других типов. У них отсутствует «эффект памяти», для них не требуется проведения контрольно-тренировочных циклов, продлевающих срок службы. И, наконец, саморазряд литий-ионных батарей, который вдвое меньше, чем у никель-кадмиевых и никель-металлгидрид-ных батарей, делает их незаменимыми при использовании во многих приложениях.
Высокое напряжение на элементе батареи позволяет производителям выпускать аккумуляторные источники питания, состоящие всего лишь из одного элемента. Такие источники используются во многих моделях современных мобильных телефонов, а простота конструкции упрощает производство батарей. При производстве мощных батарей, состоящих из нескольких элементов, большое преимущество дает очень низкое внутреннее сопротивление литий-ионных элементов.
В последние годы появилось несколько типов литий-ионных батарей, различающихся по конструкции. В оригинальных бата-
Фото 4.1
реях Sony в качестве материала отрицательных пластин применялся кокс (продукт переработки угля). С 1997 г. в большинстве литий-ионных батарей различных производителей (в том числе и Sony) наметилась тенденция к использованию графита. Графи товые пластины позволяют обеспечить более плоскую характеристику напряжения разряда, чем при использовании пластин на основе кокса. В результате аккумуляторные батареи с графитовыми пластинами имеют напряжение конца разряда 3 В на элемент против напряжения конца разряда 2,5 В на элемент для батарей с пластинами из кокса. Кроме того, при использовании в батареях графитовых пластин достижим более высокий ток разряда, они меньше нагреваются и обладают меньшим саморазрядом. На рис. 4.1 показано устройство литий-ионного аккуму лятора в цилиндрическом корпусе.
В качестве положительных пластин литий-ионных батарей применяют сплавы лития с кобальтом или марганцем. И если пластины из литие-кобальтового сплава служат дольше, то ли-тие-марганцевые пластины значительно безопасней и «прощают» ошибки при эксплуатации. Небольшие призматические ли-
92
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
93
Рис. 4.1. Устройство литий-ионного аккумулятора
тий-ионные аккумуляторные батареи для мобильных телефонов с литие-марганцевыми пластинами имеют встроенные термопре-дохранитель и термодатчик. Кроме того, их производство уде^ шевляет применение упрощенной схемы защиты, более шикая стоимость сырья, чем для производства батареи с литие-кобаль товыми пластинами.
При заряде литий-ионных батарей протекают реакции:
• на положительных пластинах:
LiCoO2 -> Li1-x CoO2 + xLi+ + хе-;
• на отрицательных пластинах:
С + xLi+ + хе' -> CLix. При разряде протекают обратные реакции. Процесс заряда
иллюстрирует рис. 4.2. к
Что касается экологической безопасности, литий-ионные ба тареи значительно безопаснее аккумуляторных батареи на основе свинца или кадмия. А среди литий-ионных батареи наиболее безопасны батареи, в которых используется марганец.
Несмотря на все преимущества, такие батареи обладают и недостатками. Они хрупкие и требуют применения специальныx схем защиты для обеспечения безопасной работы. Схема защи ты, встроенная в корпус батареи, ограничивает пиковое напряжение на каждом элементе в процессе заряда и предупреждает падение напряжения ниже допустимого значения при разряде.
Рис. 4.2. Процесс заряда литий-ионного аккумулятора
Кроме того, эта схема ограничивает зарядный и разрядный токи, обеспечивает мониторинг температуры батареи, чтобы избежать перегрева. В целом предохранительные меры предупреждают образование металлического лития при перезаряде, опасность вентиляции с выбросом пламе,ни или взрыва.
Большинству типов литий-ионных батарей свойственно старение. По неизвестным причинам производители батарей информацию об этом скрывают. Иногда в технических данных пишут о возможности некоторого снижения емкости батареи через один год независимо от того, использовалась она или не использовалась. Через 2—3 года батареи чаще всего выходят из строя. Это, скорее всего, связано с тем, что в веществах, входящих в состав батарей, со временем происходят необратимые химические процессы, приводящие батареи в негодное состояние.
Хранение батарей в прохладном месте замедляет процессы старения литий-ионных батарей так же, как и батарей других типов. Производители рекомендуют хранить батареи при температуре 15 °С. При этом батареи должны быть подзаряжены.
Для литий-ионных батарей не рекомендуется длительное хранение. Более того, в процессе хранения они должны быть подвержены ротации (т. е. их следует периодически переворачивать). При покупке батареи потребитель должен быть предупрежден производителем о сроке ее замены. К сожалению, информация о дате выпуска часто кодируется среди цифр серийного номера или отдельно, что не позволяет конечному
94
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
95
потребителю определить дату выпуска без использования справочной литературы.
Производители постоянно работают над улучшением качества литий-ионных аккумуляторных батарей. Примерно каждые полгода они используют новые или улучшенные химические составы. При таких темпах сложно, а подчас и невозможно уследить за данными об изменениях в сроке хранения и эксплуатации.
Лучшими по соотношению цена/емкость являются цилиндрические литий-ионные аккумуляторные батареи. Чаще всего они применяются в мобильных компьютерах. Если необходима батарея в корпусе тоньше 18 мм, лучший выбор — призматиче ские литий-ионные элементы, хотя они вдвое дороже цилиндрических. При необходимости батарей в сверхтонком корпусе (тоньше 4 мм), лучше всего подойдут литий-полимерные системы.
Преимущества литий-ионных аккумуляторных батарей:
высокая энергетическая плотность;
низкий саморазряд;
отсутствует «эффект памяти»;
простота обслуживания.
Недостатки литий-ионных аккумуляторных батарей:
необходимость схемы защиты по току и напряжению;
относительно быстрое старение. Хранение батареи в про
хладном месте снижает процесс старения примерно на
40%;
умеренный ток разряда;
проблемы при перевозке больших партий батарей — необ
ходимо согласование;
более высокая цена (на 40 % выше по сравнению с ни
кель-кадмиевыми батареями);
конструкция не доведена до совершенства.
При работе с литий-ионными батареями следует соблюдать меры предосторожности: нельзя замыкать их выводы накоротко, допускать перезаряд, разбирать, прикладывать напряжение обратной полярности, нагревать.
Следует использовать только литий-ионные батареи, имеющие схему защиты. Электролит таких батарей легко воспламеняем.
Количество типов корпусов литий-ионных аккумуляторных батарей ограничено несколькими типоразмерами, из которых наиболее популярен 18650 (18 — диаметр в миллиметрах, 650 — длина, мм • 0,1). Элементы этого типоразмера имеют емкость от 1800 до 2000 мАч. Емкость более крупных элементов типоразмера 26650 диаметром 26 мм достигает уже 3200 мА.
4.2. Особенности литий-полимерных аккумуляторных
батарей
Литий-полимерные батареи отличаются от обычных литий-ионных аккумуляторных батарей видом используемого электролита. Разработанные в 1970-х годах, они используют только твердый сухой электролит из полимера, который похож на пленку из пластика, не проводящую электрический ток, но обеспечивающую ионообмен (т. е. пропускающую через себя ионы — электрически заряженные атомы или группы атомов). Полимерный электролит заменяет традиционный пористый сепаратор, пропитываемый жидким электролитом.
Сухой полимер позволяет упростить производство, улучшить безопасность аккумуляторных батарей этого вида и добиться их тонкопрофильной геометрии. При этом исчезает опасность воспламенения батарей, поскольку в них не используется жидкий или гелеобразный электролит.
С появлением элементов литий-полимерных аккумуляторных батарей толщиной всего в 1 мм перед конструкторами аппа ратуры открылись новые возможности в отношении конечной формы и размеров новых электронных устройств. Были сняты многие ограничения касательно микроминиатюризации радиоэлектронных устройств. Новые микроэлементы питания для коммерческого использования появились на рынке всего несколько лет назад.
К сожалению, недостатком литий-полимеров является их плохая проводимость. Внутреннее сопротивление литий-полимерных батарей слишком велико и не позволяет обеспечивать токи, необходимые для работы современных средств связи и работы жестких дисков портативных компьютеров. Хотя нагрев элемента таких батарей до 60 °С и выше и увеличивает проводи мость до необходимых значений, такой способ снижения их
96
Литий-ионные и литий-полимерные батареи
внутреннего сопротивления не пригоден для коммерческих приложений.
Исследования в области усовершенствования характеристик литий-полимерных батарей при работе в условиях температур, близких к комнатным, продолжаются. Ожидается, что уже к 2005 г. появятся батареи этого типа, пригодные для коммерче ского применения, способные сохранять работоспособность при количестве циклов заряд/разряд до 1000 и имеющие более высо кую энергетическую плотность, чем выпускаемые в настоящее время литий-ионные батареи.
В то же время литий-полимерные аккумуляторные батареи в настоящее время успешно применяются в источниках резервного питания в странах с жарким климатом. Чаще всего они заменяют свинцово-кислотные батареи (VRLA), которые критичны к
98
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
99
Верхняя крышка
Отверстие для заливки электролита
Анод
Прокладка
Лазерная сварка
Предохранительный клапан
Лазерная сварка
Спейсер(бакелит)
Вывод (А/)
Термопредохранитель
Катод
Внутренний корпус
Токовый коллектор: •анод—А\, графит ■ сепаратор • катод — Сu, LiCoO
Рис. 4.3. Конструкция литий-ионного аккумулятора в призматическом корпусе
ются и в цилиндрических корпусах, а вот литий-полимерные батареи имеют исключительно призматические элементы, и для них не существует каких-либо стандартов, определяющих габа ритные размеры. Призматические элементы по габаритам часто привязывают к типоразмерам 340648 и 340848, где первые две цифры означают ширину элемента, две другие — его толщину и две последние — длину. Некоторые производители позволяют себе отступать от этих стандартов. Например, Panasonic выпускает батареи размерами 34 х 50 мм и толщиной 6,5 мм. Это дела ется умышленно, с целью увеличения емкости батареи. Кроме того, маркировка литий-ионных аккумуляторов Panasonic отличается порядком цифр. Например, CGA103450, где две первые цифры обозначают толщину аккумулятора в миллиметрах, две другие — его ширину, две последние — высоту.
Недостатком призматических элементов является их более низкая по сравнению с цилиндрическими элементами энергетическая плотность. Кроме того, производство призматических элементов обходится дороже, сами они не обеспечивают такой высокой механической прочности, какую обеспечивают цилиндрические элементы. Для предупреждения раздутия из-за внутреннего давления газов корпус призматических элементов приходится изготавливать из более прочных металлов, хотя производители и допускают возможность их незначительного раздувания.
При небольших габаритах призматические элементы имеют емкость от 400 до 2000 мА-ч и выше. Поскольку для различных моделей мобильных телефонов необходимы батареи определен-
ных размеров и формы, производители аккумуляторных батарей полностью удовлетворяют запросы их производителей. Такие ба тареи не имеют системы вентиляции и могут раздуваться. Но, если соблюдать правила их эксплуатации, этого не произойдет.
В 1995 г. впервые были представлены элементы аккумуляторных батарей в виде пакета. В отличие от дорогостоящих металлических цилиндров и переходов стекло-металл для изоляции пластин противоположной полярности, в пакетных элементах положительные и отрицательные пластины завернуты в гибкую жаропрочную фольгу. Выводы такого элемента представляют собой проводящие выводы из фольги, к которым припаяны электроды, изолированные от материала пакета. Внешний вид пакетного элемента представлен на рис. 4.4.
Из-за своей конструкции пакетный элемент позволяет точно «привязаться» к заданным размерам необходимого элемента, добиваясь эффективности использования внутреннего пространства корпуса в 90...95 %. А это наиболее высокий коэф фициент использования пространства корпуса из всех видов аккумуляторов.
В связи с отсутствием металлического корпуса пакетные элементы имеют малый вес. Основные области их применения: мо-
Тефлоновая подложка с токосъемником из графита
Анод из полимера
Полимер, пропитанный гелевым электролитом
Катод из полимера
Тефлоновая подложка с токосъемником из графита
Рис. 4.4. Пакетные элементы литий-ионных батарей
100
Литий-ионные и литий-полимерные батареи
бильные устройства, военная техника связи. Размеры элементов не стандартизованы, они выпускаются для целевого назначения.
По принципу работы пакетные элементы относятся к литий-ионным или литий-полимерным аккумуляторам. В настоящее время они еще достаточно дороги для массового производства и, кроме того, недостаточно надежны, их энергетическая плотность и токи разряда меньше, чем у аккумуляторов обычной конструкции, и, соответственно, меньше срок службы.
Неприятной является возможность раздутия пакетных элементов выделяющимися при заряде или разряде газами. Производители утверждают и настаивают на том, что в правильно сконструированных литий-ионных и литий-полимерных элементах газы не выделяются, если строго соблюдаются правила их эксплуатации: заряд должен происходить только при определенной величине тока, и напряжение заряда должно лежать в пределах допустимых значений. При разработке защитного покрытия пакетных элементов необходимо предусматривать некоторый запас свободного объема для предотвращения раздутия, а при использовании нескольких элементов в качестве батареи лучше не объединять их в «пачку», а располагать рядом один за
другим.
Пакетные элементы очень чувствительны к скручиванию, а также к точечным давлениям. Поэтому защитное покрытие должно предохранять элементы от такого вида воздействий и механических ударов.
В различных видах цифровой аппаратуры, в том числе и в компьютерной технике, в качестве источника питания энергонезависимой памяти используют таблеточные литий-ионные аккумуляторы. Устройство такого аккумулятора поясняет рис. 4.5.
Вывод анода
Анод(Li-Al)
Корпус элемента Коллектор
Катод (V2O5)
Прокладка
Рис. 4.5. Устройство таблеточного литий-ионного аккумулятора
Сепаратор
Литий-ионные и литий-полимерные батареи
4.4. Заряд литий-ионных батарей
Зарядные устройства литий-ионных батарей по принципу работы подобны зарядным устройствам свинцово-кислотных батарей — это устройства с ограничением напряжения заряда. Отличия состоят в более высоком напряжении элемента литий-ионной батареи, меньших допустимых отклонениях напряжения заряда и отсутствии необходимости компенсационного заряда (струйной подзарядки) по достижении батареей состояния полного заряда.
В то время как при заряде свинцово-кислотных батарей допускается довольно гибкое определение напряжения отсечки (конца заряда), к величине напряжения отсечки при заряде литий-ионных батарей предъявляются жесткие требования: оно должно быть строго определенного значения.
В начальный период, когда только появились литий-ионные батареи, использующие графитовую систему, требовалось ограничение напряжения заряда из расчета 4,1 В на элемент. Хотя использование более высокого напряжения позволяет увеличить энергетическую плотность, окислительные процессы, происходившие в элементах такого типа при напряжениях, превышающих порог 4,1 В, приводили к сокращению их срока службы. Со временем этот недостаток устранили за счет применения химических добавок, и в настоящее время литий-ионные элементы можно заряжать до напряжения 4,20 В. Допустимое отклонение напряжения составляет всего лишь около + 0,05 В на элемент.
Литий-ионные батареи промышленного и военного назначения должны иметь больший срок службы, чем батареи для коммерческого применения. Поэтому для них пороговое напряжение конца заряда составляет 3,90 В на элемент. Хотя энергетическая плотность (соотношение кВтч/кг) у таких батарей ниже, увеличенный срок службы при небольших размерах, весе и более высокая по сравнению с батареями других типов энергетическая плотность ставят литий-ионные батареи вне конкуренции.
При заряде литий-ионных батарей током 1С время заряда доставляет 2—3 ч. В процессе заряда они не нагреваются. Батарея достигает состояния полного заряда, когда напряжение на ней становится равным напряжению отсечки, а ток при этом значительно снижается и составляет примерно 3 % от начального тока заряда (рис. 4.6).
102
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
103
2000
5,0
1600
4,5
Напряжение заряда
1200
4,0
Ток заряда
800
3,5
400
3,0
0
2,0
2,5
1.5
1,0
Рис. 4.6. График цикла заряда литий-ионного аккумулятора
Если на рис. 4.6 представлен типовой график заряда одного из типов литий-ионных аккумуляторов, производимых компанией Panasonic, то на рис. 4.7 процесс заряда представлен более наглядно. При увеличении тока заряда литий-ионной батареи время заряда сколько-нибудь значимо не сокращается. Хотя при более высоком токе заряда напряжение на батарее нарастает быстрее, этап подзарядки после окончания первого этапа цикла заряда длится дольше.
В некоторых типах зарядных устройств для заряда литий-ионной батареи требуется время 1 ч и менее. В таких устройствах этап 2 исключен, и батарея переходит в состояние «готово» сразу после завершения этапа 1. В этой точке она будет заряжена примерно на 70 %, и после этого возможна ее подзарядка.
Способ струйной подзарядки для литий-ионных аккумуляторов неприменим из-за того, что они не способны поглощать
Напряжение
4,20 В
Периодический компенсирующий заряд. Проводят в течение срока хранения примерно через каждые 500 ч
Макс, напряжение зарада
Макс, ток заряда
ЭТАП 3 Время, ч
ЭТАП 2
ЭТАП1
2
3
Момент прекращения заряда. Наступает тогда, когда величина тока заряда уменьшится до значения 3% от начального
Через аккумулятор протекает макс, ток заряда, пока напряжение на нем не достигнет порогового значения (4,2 В)
Макс, напряжение на аккумуляторе достигнуто. Ток заряда постепенно уменьшается до тех пор, пока он полностью не зарядится
Рис. 4.7. Обобщенный график цикла заряда литий-ионных аккумуляторов
0,5
Ток
1
2,5
0
Время, ч
энергию при перезаряде. Более того, струйная подзарядка может вызвать металлизацию лития, что делает работу аккумулятора нестабильной. Напротив, короткая подзарядка постоянным током способна компенсировать небольшой саморазряд батареи и компенсировать потери энергии, вызванные работой ее устройства защиты. В зависимости от типа зарядного устройства и степени саморазряда батареи такая подзарядка может проводиться через каждые 500 ч, или 20 дней. Обычно ее следует проводить при снижении напряжения холостого хода до 4,05 В/элемент и завершать, когда оно достигнет 4,20 В/элемент.
А что может произойти при случайном перезаряде литий-ионной батареи? Батареи этого типа могут безопасно работать только при нормальном напряжении заряда. Если оно будет выше нормального, батарея может работать нестабильно и выйти из строя. Это происходит потому, что при превышении значения напряжения заряда 4,30 В/элемент начинает происходить металлизация анода литием, а на катоде происходит активное выделение кислорода, и температура батареи при этом растет.
Безопасной работе литий-ионных батарей должно уделяться серьезное внимание. В батареях коммерческого назначения имеются специальные устройства защиты, предупреждающие превышение напряжения заряда выше определенного порогового значения, которое, как было уже отмечено выше, составляет 4,30 В/элемент. Дополнительный элемент защиты обеспечивает прекращение заряда, если температура батареи достигнет 90 °С. Наиболее совершенные по конструкции батареи имеют еще один элемент защиты — механический выключатель, который срабатывает при повышении внутрикорпусного давления батареи. Встроенная система контроля напряжения настроена на два напряжения отсечки — верхнего и нижнего порогов.
Есть и исключения — литий-ионные батареи, в которых устройства защиты вообще отсутствуют. Это батареи, в состав которых входит марганец. Благодаря его наличию, при перезаряде процессы металлизации анода и выделения кислорода на катоде происходят настолько вяло, что стало возможным отказаться от использования устройств защиты.
Литий-ионные батареи имеют отличные зарядные характеристики как при высоких, так и при низких температурах. Некоторые из них можно заряжать током 1С при температурах от 0 до 45 °С. Большинство же литий-ионных батарей при низких тем-
104
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
105
пературах — от 5 °С и ниже — «предпочитает» меньшие токи заряда. При этом следует избегать заряда при температуре замерза ния, т. к. на аноде происходит осаждение металлического лития.
Категорически запрещается разбирать литий-ионные аккумуляторы. В случае протечки электролита и его попадания на открытые участки кожи или в глаза следует немедленно промыть их чистой водой и делать это в течение 15 мин. После чего следует обратиться к врачу.
4.5. Заряд литий-полимерных батарей
Процесс заряда литий-полимерных батарей подобен заряду литий-ионных батарей. В литий-полимерных батареях используется сухой электролит. Время их заряда составляет 3...5 ч. Ли тий-полимерные батареи с гелевым электролитом чаще всего классифицируют как литий-ионные, и их процессы заряда аналогичны.
Большинство зарядных устройств предназначены для зарядки как литий-ионных, так и литий-полимерных батарей. Так что потребителю нет необходимости задумываться, какую батарею он использует.
В настоящее время большинство литий-ионных батарей коммерческого назначения на самом деле представляет собой литий-полимерные батареи с гелевым электролитом, и недорогие литий-полимерные батареи с сухим электролитом через несколько лет будут ими вытеснены.
4.6. Устройства защиты литий-ионных аккумуляторных
батарей
Литий-ионные батареи коммерческого назначения имеют наиболее совершенную защиту среди всех типов батарей. Такой уровень защиты обусловлен тем, что, будучи подключенными к какому-либо электронному устройству, они постоянно находятся в руках человека. Обычно в схеме защиты литий-ионных батарей используется ключ на полевом транзисторе, который при достижении на элементе батареи напряжения 4,30 В открывается
и тем самым прекращает процесс заряда. Кроме того, имеющийся термопредохранитель при нагреве батареи до 90 °С отключает цепь ее нагрузки, обеспечивая таким образом ее термальную защиту. Но и это не все! Каждый элемент имеет выключатель, который срабатывает при достижении порогового уровня давления внутри ее корпуса, равного 1034 кПа (10,5 кг/м 2), и разрывает цепь нагрузки. Есть и схема защиты от глубокого разряда, которая следит за напряжением батареи и разрывает цепь нагрузки, если оно снизится до уровня 2,5 В на элемент.
Внутреннее сопротивление схемы защиты аккумуляторной батареи мобильного телефона во включенном состоянии составляет 50... 100 мОм (0,05...0,1 Ом). Конструктивно она состоит из двух ключей, соединенных последовательно. Один из них срабатывает при достижении верхнего, а другой — нижнего порога на пряжения на батарее. Общее сопротивление этих ключей фактически обеспечивает удвоение ее внутреннего сопротивления, особенно если она состоит всего лишь из одного элемента. Батареи питания мобильных телефонов должны обеспечивать высокие токи нагрузки, что возможно при максимально низком внутреннем сопротивлении батарей. Таким образом, схема защиты представляет собой препятствие, ограничивающее ее рабочий ток.
В некоторых типах литий-ионных батарей, использующих в своем химическом составе марганец и состоящих из 1—2 эле ментов, схема защиты не используется. Вместо этого в них установлен всего лишь один предохранитель. И такие батареи являются безопасными из-за их малых габаритов и низкой емкости. Кроме того, марганец довольно терпим к нарушениям правил эксплуатации батареи. Отсутствие схемы защиты снижает стоимость литий-ионной батареи, но привносит новые проблемы.
В частности, пользователи мобильных телефонов могут использовать для подзарядки их батарей нештатные зарядные устройства. При таких недорогих зарядных устройствах, предназначенных для подзарядки от сети или от бортовой сети автомобиля, можно быть уверенным, что при наличии в батарее схемы защиты, она отключит ее по достижении напряжения конца заряда. Если же схема защиты отсутствует, произойдет перезаряд батареи и, как это часто бывает, ее необратимый выход из строя. Этот процесс обычно сопровождается повышенным нагревом и раздутием корпуса батареи. Конечно, таких ситуаций допускать нельзя. Кроме того, при выходе батареи по причине использова-
106
Литий-ионные и литий-полимерные батареи
Литий-ионные и литий-полимерные батареи
107
ния нештатного зарядного устройства замене по гарантии она не подлежит.
Другое, литий-ионные батареи с электродами из кобальта, например, требуют полной защиты. Разряд статического электричества или неисправность зарядного устройства могут повлечь выход из строя схемы защиты батареи. Это значит, что в результате твердотельный ключ схемы защиты постоянно находится во включенном состоянии, а пользователь об этом не подозревает. При этом аккумуляторная батарея может функционировать нормально, но требованиям безопасности она отвечать не будет. В процессе заряда могут произойти ее перегрев, раздутие корпуса и в некоторых случаях выход газов с воспламенением («венти ляция с пламенем») со всеми вытекающими последствиями. Короткое замыкание выводов батареи также опасно.
Производители литий-ионных батарей в их технических характеристиках стараются не упоминать об их взрывоопасности. Вместо этого они используют термин «вентиляция с пламенем». И хотя эта реакция протекает медленнее взрыва, она настолько интенсивна, что приводит к сильному удару на небольшом расстоянии от батареи и может вывести из строя электронное устройство, которое питается от этой батареи.
Большинство производителей литий-ионных аккумуляторов не продают их отдельно в качестве элементов аккумуляторных батарей. Вместо этого они выпускают и продают литий-ионные аккумуляторные батареи со встроенными схемами защиты, поскольку понимают опасность, исходящую от неумелого их применения, и в интересах потребителя стараются минимизировать возможные негативные последствия, которые могут возникнуть при их эксплуатации. Этим же целям служит и жесткая сертификация продукции компаний, предшествующая появлению новых типов литий-ионных аккумуляторных батарей на рынке.
4.7. Заряд полностью разряженных литий-ионных аккумуляторных батарей
Типовое значение напряжения конца разряда для литий-ионных аккумуляторов составляет 3 В на элемент, а упоминаемое выше 2,5 В — это напряжение отсечки, прерывающее процесс дальнейшего разряда. Однако на практике случается,
что такие аккумуляторы могут быть совершенно разряжены, когда напряжение имеет значение ниже 2,5 В на элемент. Обычно это происходит при их длительном хранении без подзарядки. В этом случае производители литий-ионных батарей рекомендуют трехступенчатый способ их заряда для перевода в рабочее состояние.
Не все зарядные устройства могут обеспечить зарядку литий-ионных батарей, разряженных до напряжения менее 2,5 В на элемент. Сначала необходимо поднять напряжение на батарее до уровня, достаточного для начала работы зарядного устройства. После этого необходим заряд малым током для восстановления ее емкости. Особую осторожность следует проявлять при возвращении к жизни литий-ионных батарей, которые имели длительный перерыв в эксплуатации и хранились в состоянии глубокого или полного разряда.
В качестве примера приведем рекомендации по зарядке полностью разряженной литий-ионной батареи, применяемой для питания мобильных телефонов Siemens серии 45 (S45, МЕ45). В этих телефонах используется литий-ионная батарея емкостью 840 мАч. Роль датчика температуры в ней выполняет терморезистор сопротивлением 22 кОм при t° = 25 °С. В целом управление питанием сотового телефона обеспечивает специализированная микросхема (ASIC). Производитель — компания Siemens — чет ко определил, что нижний предел напряжения, до которого можно разрядить аккумуляторную батарею, составляет 3,2 В. Почему не 2,5 В, как было указано выше? Потому что только при напряжении не ниже 3,2 В гарантирована работа мобильно го телефона. Напряжение же полностью заряженной батареи составляет 4,2 В.
В случае, если произошел глубокий разряд батареи, зарядить ее как обычно — за 2—3 часа — не удастся. Восстановительный заряд необходимо выполнять в три этапа:
Заряд батареи током 20 мА до напряжения 2,8 В.
Заряд током 50 мА до напряжения 3,2 В.
Нормальный заряд до напряжения 4,2 В.
При полном разряде аккумуляторной батареи процессом ее заряда управляет специализированная (заказная) микросхема ASIC типа DO8296B. Причем в данном случае ее источником питания на первых двух этапах заряда является зарядное устройство, а на третьем — уже сама аккумуляторная батарея.
108
Литий-ионные и литий-полимерные батареи
Каждая цепочка параллельно включенных литий-ионных аккумуляторов должна иметь собственные средства мониторинга их состояния.
Чем больше элементов последовательно соединено в батарее, тем совершеннее должна быть ее схема защиты. В коммерческих приложениях количество аккумуляторов в батарее не должно превышать четырех.
Достарыңызбен бөлісу: |