Development trends of modern education
112
SRSTI 27.35.33
CREATION OF A MATHEMATICAL MODEL OF FLOW
OF AN AIR IN A C/C ++ PROGRAMMING ENVIRONMENT
USING THE NAVIER-STOKES EQUATION
N. Baitemirova, A. Kaliyeva
Atyrau State University named by Kh. Dosmukhamedov, Atyrau
Статья посвящена моделированию физического процесса описывающая
движение вязкой ньютоновской жидкости. В
материале рассматривается
дифференциальные уравнения Навье-Стокса которая используются для
имитации воздушного потока вокруг припятствий. С использованием
численными методами решении этих уравнении с помощью языка
программирования С++, выполнен анализ распределение
скорости воздушного
потока воздуха в двумерном пространстве. Распределение составляющих
скорости
u
и
v
происходит в разных направлениях. На основании полученных
данных было выявлено что при скорости, равной
u=1
, мы видим плавный поток
воздуха вокруг здания. Также можно увидеть давление,
оказываемое на стены
здания. Когда воздух проходит через здания, можно увидеть неравномерное
распределение скорости воздушного потока.
Key words:
Navier-Stokes equation, velocity, viscous,
modeling, flow,
physical process.
The Navier Stokes equation dates back to 1822. For the first time this equation
was written by Navier in the same 1822, Stokes wrote it in 1842-1843, since these
results were independent of each other, the equation bears their name.
The Navier-Stokes equation belongs to the field of hydro-gas dynamics and is
of great importance.
With the help of this equation, it is possible to describe the
movements of any viscosity of a Newtonian, incompressible fluid: water in the
heating system,
underwater water tanks, tsunamis and fluid movement in any
technological process from oils to acid alkalis and blood movement in the human
body, etc. Navier-Stokes differential equations are used to simulate the airflow
around the pripyatstvii. At the moment, there are good numerical methods for solving
these equations using computers. Similar methods are used to calculate aerodynamics
or aircraft, submarines, etc.
Article is about solving Navier-Stokes equation which consist three equations
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
= 0
(1)
Қазіргі білім берудің даму тенденциялары
113
– continuty equation. Physical meaning of this equation is conservation of mass for
fluid flow. The next two equation (2), (3) are equation of motions: speed
componentary direction by
u
and
v
. There are density, pressure, Reynolds number,
that is kinematic viscosity.
𝜕𝑢
𝜕𝑡
+ 𝑢
𝜕𝑢
𝜕𝑥
+ 𝑣
𝜕𝑢
𝜕𝑦
= −
1
𝜌
𝜕𝑃
𝜕𝑥
+
1
𝑅𝑒
(
𝜕
2
𝑢
𝜕𝑥
2
+
𝜕
2
𝑢
𝜕𝑦
2
)
(2)
𝜕𝑣
𝜕𝑡
+ 𝑢
𝜕𝑣
𝜕𝑥
+ 𝑣
𝜕𝑣
𝜕𝑦
= −
1
𝜌
𝜕𝑃
𝜕𝑥
+
1
𝑅𝑒
(
𝜕
2
𝑣
𝜕𝑥
2
+
𝜕
2
𝑣
𝜕𝑦
2
)
(3)
There are in the Picture 1 boundary conditions. Also, we have three obstacles
in the form buildings. The inlet is made from the part of
the left side to the uppers
right side. At the entrance taken the component of the velocity u as 1 and v as 0. At
the boundaries taken the component of the velocity u and v as 0. At the boundary is
pressure is set by using the Newman conditions, but at the output is equal to 0.
Components of velocity at the boundaries are set by set using the Newman.
Picture 1. Boundary conditions with three obstacles.
Достарыңызбен бөлісу: