Сборник текстов на казахском, русском, английском языках для формирования навыков по видам речевой деятельности обучающихся уровней среднего образования



бет67/87
Дата28.01.2018
өлшемі18,66 Mb.
#34871
1   ...   63   64   65   66   67   68   69   70   ...   87

A schematic ofhemoglobin. The red and blue ribbons represent the protein globin; the green structures are the hemegroups.


Some proteins perform largely structural roles. For instance, movements of the proteins actin and myosinultimately are responsible for the contraction of skeletal muscle. One property many proteins have is that they specifically bind to a certain molecule or class of molecules—they may be extremely selective in what they bind.Antibodies are an example of proteins that attach to one specific type of molecule. In fact, the enzyme-linked immunosorbent assay (ELISA), which uses antibodies, is one of the most sensitive tests modern medicine uses to detect various biomolecules. Probably the most important proteins, however, are the enzymes. Virtually every reaction in a living cell requires an enzyme to lower the activation energy of the reaction. These molecules recognize specific reactant molecules called substrates; they then catalyze the reaction between them. By lowering the activation energy, the enzyme speeds up that reaction by a rate of 1011 or more; a reaction that would normally take over 3,000 years to complete spontaneously might take less than a second with an enzyme. The enzyme itself is not used up in the process, and is free to catalyze the same reaction with a new set of substrates. Using various modifiers, the activity of the enzyme can be regulated, enabling control of the biochemistry of the cell as a whole.
The structure of proteins is traditionally described in a hierarchy of four levels. The primary structure of a protein simply consists of its linear sequence of amino acids; for instance, "alanine-glycine-tryptophan-serine-glutamate-asparagine-glycine-lysine -…". Secondary structure is concerned with local morphology (morphology being the study of structure). Some combinations of amino acids will tend to curl up in a coil called anα-helix or into a sheet called a β-sheet; some α-helixes can be seen in the hemoglobin schematic above. Tertiary structure is the entire three-dimensional shape of the protein. This shape is determined by the sequence of amino acids. In fact, a single change can change the entire structure. The alpha chain of hemoglobin contains 146 amino acid residues; substitution of the glutamate residue at position 6 with a valine residue changes the behavior of hemoglobin so much that it results in sickle-cell disease. Finally, quaternary structure is concerned with the structure of a

protein with multiple peptide subunits, like hemoglobin with its four subunits. Not all proteins have more than one subunit.[43]

497

Examples of protein structures from the Protein Data Bank

Members of a protein family, as represented by the structures of the isomerase domains.
Ingested proteins are usually broken up into single amino acids or dipeptides in the small intestine, and then absorbed. They can then be joined to make new proteins. Intermediate products of glycolysis, the citric acid cycle, and the pentose phosphate pathway can be used to make all twenty amino acids, and most bacteria and plants possess all the necessary enzymes to synthesize them. Humans and other mammals, however, can synthesize only half of them. They cannot synthesize isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. These are the essential amino acids, since it is essential to ingest them. Mammals do possess the enzymes to synthesize alanine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, andtyrosine, the nonessential amino acids. While they can synthesize arginine and histidine, they cannot produce it in sufficient amounts for young, growing animals, and so these are often considered essential amino acids.
498

If the amino group is removed from an amino acid, it leaves behind a carbon skeleton called an α-keto acid. Enzymes called transaminases can easily transfer the amino group from one amino acid (making it an α-keto acid) to another α-keto acid (making it an amino acid). This is important in the biosynthesis of amino acids, as for many of the pathways, intermediates from other biochemical pathways are converted to the α-keto acid skeleton, and then an amino group is added, often via transamination. The amino acids may then be linked together to make a protein.[44]


A similar process is used to break down proteins. It is first hydrolyzed into its component amino acids. Free ammonia(NH3), existing as the ammonium ion (NH4+) in blood, is toxic to life forms. A suitable method for excreting it must therefore exist. Different tactics have evolved in different animals, depending on the animals' needs. Unicellularorganisms, of course, simply release the ammonia into the environment. Likewise, bony fish can release the ammonia into the water where it is quickly diluted. In general, mammals convert the ammonia into urea, via the urea cycle.[45]
In order to determine whether two proteins are related, or in other words to decide whether they are homologous or not, scientists use sequence-comparison methods. Methods like sequence alignments and structural alignments are powerful tools that help scientists identify homologies between related molecules.[46] The relevance of finding homologies among proteins goes beyond forming an evolutionary pattern of protein families. By finding how similar two protein sequences are, we acquire knowledge about their structure and therefore their function.
Nucleic acids
Main articles: Nucleic acid, DNA, RNA, and Nucleotides

The structure of deoxyribonucleic acid (DNA), the picture shows the monomers being put together.


Nucleic acids, so called because of its prevalence in cellular nuclei, is the generic name of the family of biopolymers. They are complex, high-molecular-weight biochemical macromolecules that can convey genetic information in all living cells and viruses.[2] The monomers are called nucleotides, and each consists of three components: a nitrogenous heterocyclic base (either a purine or a pyrimidine), a pentose sugar, and a phosphate group.[47]

499



Каталог: kopilka
kopilka -> Оқып үйренудің негізгі мақсаты Оқытуда қалыптасатын әдіс-тәсілдер
kopilka -> Жүсіпбек Аймауытовтың «Әнші» әңгімесіндегі дара тұлға
kopilka -> Сабақтың тақырыбы Қадыр Мырзалиев "Ана"
kopilka -> Тақырыптың туындау себептері
kopilka -> Сабақ тақырыбы: Қазақстан Республикасының Тұңғыш Президенті Н.Ә. Назарбаевтың ерекше тұлғалық болмысы
kopilka -> Ххі ғасыр көшбасшысы өткізген
kopilka -> Жарық туралы дуализм Квант дегеніміз не? Абсолют қара дене Фотон
kopilka -> Өмірбаяны 1858 жылы қазіргі Павлодар облысының Баянауыл
kopilka -> Презентация №50 Абай атындағы орта мектеп


Достарыңызбен бөлісу:
1   ...   63   64   65   66   67   68   69   70   ...   87




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет