MEMS-акселерометры устроены таким образом, что отделить друг от друга составные части – грузик, подвес, корпус и обкладки конденсатора – не так-то просто. Собственно, изящество MEMS в том и заключается, что в большинстве случаев в одной детали здесь удается (а вернее, попросту приходится) комбинировать сразу несколько предметов. Зачастую, современные MEMS-гироскопы устроены идентично акселерометрам. Просто в них значения ускорений по осям пересчитываются в значения углов поворота – конструкция примерно та же, но на выходе другая величина. Однако встречаются и гироскопы, устройство которых "заточено" именно под вращение. Такие MEMS – одни из красивейших.
Помимо конденсаторных датчиков, существуют MEMS-акселерометры, использующие иные принципы. Например, датчики, основанные на пьезоэффекте. Вместо смещения обкладок конденсатора, в акселерометрах такого типа происходит давление грузика на пьезокристалл. Основной принцип тот же, что и в пьезозажигалках – под воздействием деформации пьезоэлемент вырабатывает ток. Из значения напряжения, зная параметры системы, можно найти силу, с которой грузик давит на кристалл – и, соответственно, рассчитать искомое ускорение.
Есть и более экзотический тип MEMS-акселерометров – термальные датчики ускорения. В них в качестве основного объекта используется горячий пузырек воздуха. При движении пузырек отклоняется от центра системы, это отслеживается датчиками температуры. Чем дальше сместился пузырек – тем больше величина ускорения.
Менее популярный, но гораздо более массовый тип MEMS-устройств – микроскопические микрофоны. Опять-таки, наиболее распространенными системами этого типа являются те, которые основаны на конденсаторном принципе.
Устроены они – проще некуда. Принципиально важных элементов в таком микрофоне всего два: это гибкая обкладка – мембрана, и более толстая, неподвижная обкладка. Под воздействием давления воздуха мембрана смещается, изменяется емкость между обкладками – при постоянном заряде изменяется напряжение. Эти данные пересчитываются в амплитуды и частоты звуковой волны.
Рисунок 2 – Схема конденсатного микрофона
То, что годится для звука, подходит и для измерения давления в иных областях. Похожие на микрофоны MEMS-системы могут использоваться в качестве датчиков давления. Несложно догадаться, что применение такие сенсоры находят в уйме областей.
Но можно выделить одну область, которая является наиболее интересной и наиболее специфичной для датчиков давления, основанных на MEMS-технологии. Это медицина. Здесь размер действительно имеет значение. Если в какой-нибудь трубопровод вполне можно встроить «обычный», макроскопический датчик, то с кровеносным сосудом такой фокус, очевидно, не получится. Тут нужны очень и очень компактные решения.
Разумеется, в медицине востребованы не только датчики давления. Существует множество микроскопических биодатчиков, измеряющих массу разнообразных величин – от температуры до уровня глюкозы. Есть и более неожиданные устройства, вроде микроскопических систем подачи лекарств. И, разумеется, есть куча интереснейших прототипов, многие из которых в принципе не имеют аналогов среди макроустройств.
УДК 513
Достарыңызбен бөлісу: |