Использование тригонометрических формул
Пример 1
Найти неопределенный интеграл.
Сначала полное решение, потом комментарии.
Используем формулу:
(1) Мы видим, что в подынтегральном выражении находится произведение двух функций. К сожалению, в интегральном исчислении нет удобной формулы для интегрирования произведения: , поэтому приходится прибегать к различным ухищрениям. В данном случае мы прерываем решение значком и поясняем, что используется тригонометрическая формула. Данная формула превращает произведение в сумму.
(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.
! Справка: При работе с тригонометрическими функциями следует помнить, что:
Косинус – это четная функция, то есть , минус исчезает без всяких последствий. В рассматриваемом примере:
Синус – функция нечетная: – здесь минус, наоборот – не пропадает, а выносится.
(3) Под интегралами у нас сложные функции (косинусы не просто от , а от сложного аргумента). Это простейшие из сложных функций, интегралы от них удобнее найти методом подведения под знак дифференциала. Более подробно с данным приёмом можно ознакомиться на уроке Метод замены переменной в неопределенном интеграле.
(4) Используем табличную формулу , единственное отличие, вместо «икса» у нас сложное выражение.
Готово.
Пример 2
Найти неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 3
Найти неопределенный интеграл.
Классика жанра для тех, кто тонет на зачёте. Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.
(1) Используем тригонометрическую формулу
(2) Подводим функцию под знак дифференциала.
(3) Используем табличный интеграл .
Пример 4
Найти неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 5
Найти неопределенный интеграл.
Степени у нас будут потихоньку повышаться =).
Сначала решение:
(1) Используем формулу
(2) Используем основное тригонометрическое тождество , из которого следует, что .
(3) Почленно делим числитель на знаменатель.
(4) Используем свойство линейности неопределенного интеграла.
(5) Интегрируем с помощью таблицы.
Пример 6
Найти неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях. Интеграл от тангенса в кубе рассмотрен на уроке Как вычислить площадь плоской фигуры? Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.
Достарыңызбен бөлісу: |