Интегралы от тригонометрических функций. Примеры решений


! В неопределенном интеграле нередко ответ можно записать несколькими способами



бет4/10
Дата07.02.2022
өлшемі144,14 Kb.
#95336
түріСправочник
1   2   3   4   5   6   7   8   9   10
Байланысты:
Интегрирование рациональной и тригонометрической функции

! В неопределенном интеграле нередко ответ можно записать несколькими способами
В только что рассмотренном примере окончательный ответ  можно было записать иначе – раскрыть скобки и даже это сделать еще до интегрирования выражения, то есть вполне допустима следующая концовка примера:

Вполне возможно, что такой вариант даже удобнее, просто я объяснил так, как сам привык решать). Вот еще один характерный пример для самостоятельного решения:
Пример 10
Найти неопределенный интеграл.

Это пример решается двумя способами, и у Вас могут получиться два совершенно разных ответа (точнее говоря, они будут выглядеть совершенно по-разному, а с математической точки зрения являться эквивалентными). Скорее всего, Вы не увидите наиболее рациональный способ и помучаетесь с раскрытием скобок, использованием других тригонометрических формул. Наиболее эффективное решение приведено в конце урока.
Подытоживая параграф, сделаем вывод: любой интеграл вида  , где  и  – чётные числа, решается методом понижения степени подынтегральной функции.
На практике мне встречались интегралы с 8 и 10 степенями, решать их ужасный гемор приходилось, понижая степень несколько раз, в результате чего получались длинные-длинные ответы.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет