, , .
Ответ:
Если в уравнение входят несколько радикалов, то их можно последовательно исключать с помощью возведения в квадрат, получая в итоге уравнение вида При этом полезно учитывать область допустимых значений исходного уравнения.
Пример 2.
Ответ:
3. Решение уравнений с использованием замены переменной.
Введение вспомогательной переменной в ряде случаев приводит к упрощению уравнения. Чаще всего в качестве новой переменной используют входящий в уравнение радикал. При этом уравнение становится рациональным относительно новой переменной.
Пример1.
Пусть тогда исходное уравнение примет вид:
, корни которого и Решая уравнение , получаем и
Ответ:
В следующих примерах используется более сложная замена переменной.
Пример 2
Перенесем в левую часть все члены уравнения и произведем дополнительные преобразования: .
Замена приводит уравнение к виду корнями которого являются и
Осталось решить совокупность двух уравнений:
Ответ:
4. Метод разложения на множители выражений, входящих в уравнение. Теорема. Уравнение , определенное на всей числовой оси, равносильно совокупности уравнений Пример1.
При уравнение принимает вид: которое равносильно совокупности двух уравнений:
Ответ:
Выделить общий множитель часто бывает очень трудно. Иногда это удается сделать после дополнительных преобразований. В приведенном ниже примере для этого рассматриваются попарные разности подкоренных выражений.
Пример 2.
Если внимательно посмотреть на уравнение, то можно увидеть, что разности подкоренных выражений первого и третьего , а также второго и четвертого членов этого уравнения равны одной и той же величине
В таком случае далее следует воспользоваться тождеством:
Уравнение примет вид:
или
Корень уравнения т.е. число при подстановке в исходное уравнение дает верное равенство.
Уравнение не имеет решений, так как его левая часть положительна в своей области определения.
Ответ: