AkN=N(N-1)(N-2)…[N-(K-1)]
Өрнекті ықшамдаған қолайлы. Ол үшін (1)өрнектің алымын да бөлімін де 1,2,3…(N-k) сандарына көбейтеміз.Сонда
AKN , яғни
Мұнда N!факториал деп оқылады, ол 1-ден N-ге дейінгі натурал сандардың көбейтіндісіне тең, яғни
N!=1×2×3…N,
Немесе
N!=N(N-1)(N-2)…3×2×1.
1-мысал.
А,В,К,М,О,С әріптері бірдей карточкаларға жазылып, бір колодаға салынған. Оларды әбден араластырып, бір-бірден (не бірден) төрт карточка аламыз.Сонда: а)6 әріптен төрт-төрттен неше тәсілмен алуға болады,ә)алынған 4 әріпті қатарынан тізіп қойғанда «КВАС» сөзінің пайда болу ықтималдығын есептеу керек.
Шешуі.а)Колодадан алынған бірінші карточка сондағы 6карточканың бірі,яғни бірінші карточканы 6 тәсілмен алуға болады. Екі карточканы 6×5 тәсілмен алуға болады,өйткені бірінші карточка алынғаннан кейін екіншісін колодада қалған 5т карточканың ішінен алады.Оның үстіне, әрбір бірінші әріпәрбір екінші әріппен 6×5×4 тәсілмен, 4 әріптен алынатын комбинация 6×5×4×3 тәсілмен құралады. Есеп шарты бойынша N=6,K=4, ді (1) формуланы пайдалансақ,
А46=6×5×4×3=360
Немесе
Ә)Алдымен n-ді анықтайық. Берілген 6 әріптен әрқайсысы 4 әріптен тұратын комбинация А46=360 тәсілмен табылады.Мұнымыз барлық тең мүмкіндікті нәтижелер саны. Бұл нәтижелер қос-қостан үйлесімсіз және олар оқиғалардың толық тобын құрайды.Демек,n=360.Енді аталған сөздің пайда болуына қолайлы жағдайлар саны m-ді табамыз.
4 әріпті тіркес ішіндегі бізге қолайлысы тек бірінші орында <> әріпті,екінші орында <> әріпті,үшінші орында <> әріпі,ақырында,төртінші орында <> әрпі тұратын <<КВАС>> сөзі болмақ.Бұл сөз тек бір-ақ рет кездеседі.Сондықтан іздеген ықтималдық мынаған тең:
Достарыңызбен бөлісу: |