47. ПРОКАТНЫЙ СТАН
Прокатка — одно из важнейших изобретений, сделанных человеком за время его многовекового знакомства с металлами. Уже давно было замечено, что изделия, имеющие одинаковое сечение по всей своей длине (например, рельсы, уголки, балки, листы, пруты) гораздо проще получать пропуская их между двумя валками, чем путем традиционной ковки. Можно даже сказать, что такой способ не только самый удобный, но и вообще наилучший. Без него не могло быть и речи о строительстве дешевых железных дорог, железных мостов, железных судов и еще многого и многого другого. Ведь именно благодаря прокатке появилась возможность придавать железным и стальным заготовкам полное единообразие. Нетрудно представить, скольких усилий потребовала бы от кузнеца, например, отковка каждого рельса или колеса железнодорожного вагона. Между тем, с помощью проката получить такие изделия несложно, притом в большом количестве и высокого качества. Поэтому уже в конце XVIII века прокатка стала одним из основных звеньев производственного цикла металлургических заводов, постепенно вытесняя ковку. А зародилась она еще в средние века при изготовлении тонких листов мягкого металла (например, свинца), которые можно было прокатывать вручную без предварительного нагрева. Древнейшее изображение такого простого прокатного станка можно видеть на гравюре 1615 года.
Прокатка в горячем состоянии стала известна лишь в начале XVIII века, причем сначала этим способом готовились более или менее тонкие железные листы, но уже с 1769 года начали подобным образом прокатывать проволоку. Первый прокатный стан для железных болванок был предложен английским изобретателем Кортом, когда он работал над своим методом пудлингования. Корт первый сообразил, что при изготовлении некоторых изделий рациональнее поручить молоту только отжимку шлаков, а окончательную форму придавать путем прокатки. В 1783 году он получил патент на изобретенный им способ проката фасонного железа с помощью особых вальцов. Из пудлинговой печи крица поступала под молот, здесь она проковывалась и получала первоначальную форму, а затем пропускалась через вальцы. Этот способ получил потом большое распространение. Но только в XIX веке техника проката была поставлена на должную высоту, что во многом было связано с интенсивным строительством железных дорог. Тогда были изобретены прокатные станы для производства рельсов и вагонных колес, а потом и для многих других операций.
Прокатный стан — это машина для обработки металлов давлением между вращающимися валками. Устройство прокатного стана в XIX веке было несложным. Вращающиеся в противоположные стороны валки захватывали добела раскаленную металлическую полосу и, сжимаясь большей или меньшей силой, проводили ее между своими поверхностями. Во время прохода заготовки происходили два тесно связанных между собой процесса. Во‑первых, металл изделия подвергался сильному обжатию при высокой температуре, и, во‑вторых, заготовка приобретала необходимую форму. При этом, например, железо получало свойства, которые не имело от природы. Отдельные зерна металла, которые до прокатки располагались в его массе в беспорядке, в процессе сильного обжатия вытягивались и образовывали длинные волокна. Мягкое и ломкое железо становилось после этого упругим и прочным.
Валки помещались между мощными станинами. Цапфы валков помещались в подшипники. Обычно нижний подшипник m был неподвижным. Верхний подшипник мог передвигаться вверх и вниз с помощью болтов h. Винт e, с помощью которого устанавливался вкладыш, брал на себя все давление, оказываемое на него. Между ним и вкладышем обыкновенно вставлялся предохранительный колпачок i, лопавшийся как только давление на вал достигало опасного предела. Этот дешевый колпачок, который легко заменить, действовал как предохранитель от поломки других, более важных частей механизма (поломка могла легко произойти в том случае, если валки захватывали слишком толстую заготовку и не выдерживали давления). При прокатке верхний валок лежал цапфами на хомуте d, снабженном вкладышем e и подвешенном на двух болтах. Для связи двух таких станин между собой служили четыре толстых болта, проходившие через отверстия n поперечины и закладываемые за выемку b. Для сцепления валков с двигателем служила муфта. Нижний валок приводился в движение непосредственно от паровой машины, и ось ее совпадала с главной осью ее вала. К верхнему валку движение передавалось с помощью зубчатой передачи.
Форма изделия зависела от формы валков. Валки с гладкой поверхностью применялись для изготовления плоского железа, например листов. Для прокатки фигурных сортов их снабжали соответствующими цели выемками — калибровали. Проходя между ними, заготовка получала нужную форму, то есть превращалась в полосу округлого, квадратного, продолговатого, четырехугольного или другого сечения. Нужный профиль придавался изделию не сразу, а постепенно. Болванка последовательно проходила через целый ряд валков, из которых лишь последний имел форму готового сортового железа. Черным цветом показан профиль, который приобретал постепенно сырой металл по мере прокатки в разных валках.
К концу столетия техника проката настолько усовершенствовалась, что этим путем стали получать не только сплошные, но и пустотелые изделия. В 1885 году братья Меннесманы изобрели способ прокатки бесшовных железных труб. До этого трубы приходилось изготовлять из железного листа, — их сгибали и сваривали. Это было и долго, и дорого. На стане Меннесманов круглую болванку пропускали между двумя косо друг к другу поставленными валками, действовавшими на нее двояким образом. Во‑первых, вследствие сил трения между валками и заготовкой последняя начинала вращаться. Во‑вторых, вследствие формы валков точки средней их поверхности вращались быстрее крайних. Поэтому, из‑за косого расположения валков заготовка как бы ввинчивалась в пространство между ними. Если бы болванка была твердой, она бы не смогла пройти. Но так как ее предварительно сильно разогревали до белого каления, металл заготовки начинал скручиваться и вытягиваться, а в осевой зоне проходило его разрыхление — возникала полость, которая постепенно распространялась по всей длине заготовки. Пройдя через валки, заготовка насаживалась на специальный стержень (оправку), благодаря чему внутренней полости предавалось правильное круглое сечение. В результате выходила толстостенная труба.
Чтобы уменьшить толщину стенок, трубу пропускали через второй так называемый пилигримный прокатный стан. Он имел два валка переменного профиля. При прокатки трубы расстояние между валками сначала постепенно уменьшалось а затем делалось больше диаметра трубы. Цикл прокатки состоял из двух периодов — рабочего и холостого. Во время рабочего периода труба, в которую была введена спиральная оправка, захватывалась валками и обжималась до диаметра готовой трубы. При этом стенки ее делались тоньше, а сама она вытягивалась (валки как бы снимали слой кольцевого металла и раскатывали его до заданной толщины). Затем начинался холостой период, когда диаметр калибра превышал диаметр трубы. В это время заготовка выходила из контакта с валками и обработка данного участка заканчивалась. Заготовка продвигалась вперед и поворачивалась вокруг оси на 90 градусов (для более равномерной отделки). Цикл таким образом повторялся на последующих участках трубы.
48. НЕФТЕПРОВОД
Во второй половине XIX века получил новое развитие древний трубопроводный транспорт. Замечательной была сама идея использовать трубопровод для транспортировки нефти и газа. Таким образом была разрешена проблема доставки нефти с далеких месторождений на нефтеперерабатывающие предприятия, чрезвычайно остро стоявшая в свое время. Впервые с ней столкнулись в США. Из‑за невероятно быстрого развития нефтедобычи в Калифорнии, здесь возникли затруднения с транспортировкой нефти. Мелководные реки, содержащие нефть, могли обслуживаться только плотами. Одно время пытались повысить их уровень с помощью горных источников. Воды их собирались в специальном водохранилище и раз‑два в неделю направлялись в мелководную речку, содержащую нефть. Тогда вниз по течению пускались целые караваны барж, число которых доходило до 500. Они доставляли вместе 20‑25, даже 40 тысяч бочек нефти. Но такой способ был неудобен и требовал больших затрат. Более экономично было бы перевозить нефть по железной дороге. Однако в течение многих лет полагали, что нефтяные источники могут иссякнуть в любой момент, и поэтому не прокладывали к ним железных дорог. Это было сделано лишь много позднее. Вначале нефть отправляли в бочках, впоследствии стали употреблять для этой цели специальные вагоны‑цистерны (поначалу деревянные, а потом — железные).
В те же годы сразу у нескольких инженеров возникла идея использовать для перекачки нефти трубопровод. Однако многим этот способ казался рискованным и трудноосуществимым. В 1860 году инженер Кернс предложил проложить нефтепровод с диаметром трубы в 150 мм вдоль реки Огайо на расстояние около 50 км. Это предложение не было поддержано хозяевами месторождений. Три года спустя был проведен нефтепровод меньшего диаметра, но трубы его были соединены недостаточно прочно, так что его пришлось остановить. Этот первый нефтепровод, функционировавший на практике, имел 6 км длины и пропускал ежедневно 80 бочек нефти. В 1866 г. был построен нефтепровод длиной 16 км. Его конструктор Чарльз Гетч считал, что достаточно одного насоса для нагнетания нефти по всей длине трубы. Многие сомневались, что это возможно. Поначалу даже сама мысль проводить нефть на целые мили через горы и овраги с помощью насоса казалась нелепой и смешной. Однако Гетч, не прислушиваясь к досужим рассуждениям, доверился своим расчетам. Когда сооружение трубы было закончено, он расположился у одного конца нефтепровода и телеграфировал инженеру на другом его конце, чтобы тот включил насос и начал медленно нагнетать нефть. Трубопровод имел 50 мм в диаметре и мог вместить 180 бочек нефти. Гетч ждал, но нефть не появлялась. Так прошло несколько часов. Почти никто уже не верил в успех предприятия. Наконец послышалось легкое громыхание. Шум все усиливался, и вдруг нефть показалась у конца трубы. Ей потребовалось четыре часа на то, чтобы дойти до приемной станции. Это был исторический момент. Таким образом, Гетч доказал, что передача нефти по трубам на далекое расстояние не пустая химера, а вполне посильная для разрешения техническая задача. По нефтепроводу Гетча можно было доставлять до 2000 бочек в сутки. Вскоре были проложены и другие нефтепроводы, причем длина их все увеличивалась. Принцип работы первых нефтепроводов был очень прост. Они состояли из двух главных станций — приемной и сдаточной, между которыми прокладывалась железная труба. На приемной станции устанавливались насосы, назначение которых состояло в том, чтобы брать нефть из отборных резервуаров и нагнетать ее по трубам к резервуарам достаточной станции. Если расстояние было значительным, предусматривались промежуточные станции со своими насосами. В 1874 году был сооружен нефтепровод из Пенсильвании в Питтсбург. Он имел трубу 100 мм в диаметре и 90 км в длину — нечто колоссальное для того времени — и пропускал 7500 бочек в день.
49. ВЕЛОСИПЕД
Прототипом велосипеда был самокат конца XVII века, представлявший собой брус на двух колесах — переднем и заднем. Сидя на таком «селерифере» (то есть быстроходе), ездок отталкивался ногами от земли, а потом поджимал их, некоторое время балансируя, чтобы не упасть, и ехал по инерции. В 1814 году немецкий изобретатель барон Драйс фон Зауербронн усовершенствовал этот самокат, снабдив брус седлом. Он же ввел такое важное усовершенствование, как руль над передним колесом. В 1815 году Драйс приехал на своем детище в Вену, где тогда проходил Венский конгресс. За это легкомысленное изобретение он лишился звания княжеского лесничего в Карлсруэ. Впрочем, впоследствии он получил место профессора механики и десятилетний патент на свое изобретение и успешно занялся изготовлением «беговых машин». Несмотря на то что велосипед Драйса был еще очень далек от совершенства, он демонстрировал неплохую скорость. В 1817 году отставной лесничий на спор за четыре часа покрыл расстояние от Карлсруэ до Келя (около 70 км). Пишут, что почтовый дилижанс тратил на эту поездку в четыре раза больше времени.
Француз Динер взял в 1818 году патент на «дрезину» в своей стране, впервые назвав ее «велосипедом», то есть «быстроногим» (от латинских слов «velox» — быстрый и «pedis» — нога). Не успели велосипеды появиться на свет, как во всех европейских странах началось повальное увлечение этой новинкой. Щеголи и франты из самого высшего общества с увлечением гоняли на них по бульварам или демонстрировали свое мастерство на специальных площадках. В конце 20‑х годов этот первый «велосипедный бум» пошел на убыль. Но усовершенствование конструкции велосипеда продолжалось.
В 1845 году немецкий изобретатель Милиус построил первый велосипед с педалями на переднем колесе. С этого времени ездоки не должны были больше отталкиваться ногами от земли. Долгое время велосипеды изготавливались из дерева. В 1867 году Каупер придумал очень легкие колеса со ступицей, висящей на проволочных спицах. В 1869 году появились велосипеды с металлической рамой. Тогда же француз Мишо впервые организовал фабричное изготовление велосипедов. Соотечественник Мишо Тевенона придумал велосипедные шины из каучука, а французский фабрикант Сюрирей впервые применил в велосипедах шарикоподшипники. Это было очень важное усовершенствование. Годом позже, в 1870‑м, английский изобретатель Лоусон ввел цепную передачу от педалей на заднее колесо. Скорость велосипедиста после этих нововведений настолько возросла, что он мог соревноваться с верховой лошадью.
Свой современный вид велосипед принял в 80‑90‑е годы XIX века. Дублинский ветеринар Данлоп в 1885 году снабдил колеса велосипеда своего 12‑летнего сына пневматическими шинами из гуттаперчевого шланга, крепившимися к ободу с помощью полотняной ленты. Он же придумал клапан, позволявший легко и быстро накачать колесо, но не выпускавший воздух наружу. Мальчик ездил на этом велосипеде, довольно долго не привлекая ничьего внимания, пока один заезжий коммивояжер, пораженный легкостью хода велосипеда, не оценил его по достоинству и не указал изобретателю на ценность его находки. Только тогда, в 1888 году, Данлоп взял патент и вскоре наладил промышленное производство пневматических шин. Они быстро распространились по всему свету.
Сначала, для увеличения скорости велосипеда, переднее колесо у него делали очень большим, однако езда на такой высокой машине была сопряжена с некоторой опасностью. После изобретения цепной передачи необходимость в такой конструкции отпала.
Наибольшее увлечение велосипедом падает на 80‑е годы XIX века, когда человечество пережило новый «велосипедный бум». С 1890 года началось бурное развитие велосипедной промышленности. Количество машин, выпускаемых тогда по всему миру, составляло несколько миллионов штук.
50. ЭЛЕКТРОГЕНЕРАТОР
В главе, посвященной изобретению телеграфа, уже рассказывалось о том, что в 1820 году было открыто взаимодействие между электрическим током, протекающим в проводнике, и магнитной стрелкой. Это явление было правильно объяснено и обобщено французским физиком Ампером, который установил, что магнитные свойства любого тела являются следствием того, что внутри него протекают замкнутые электрические токи. (Или, говоря современным языком, любой электрический ток создает вокруг проводника магнитное поле.) Таким образом, любые магнитные взаимодействия можно рассматривать как следствия электрических. Однако, если электрический ток вызывает магнитные явления, естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. Долгое время физики в разных странах пытались обнаружить эту зависимость, но терпели неудачу. В самом деле, если, к примеру, рядом с проводником или катушкой лежит постоянный магнит, никакого тока в проводнике не возникает. Но если мы начнем перемещать этот магнит: приближать или удалять его от катушки, вводить и вынимать магнит из нее, то электрический ток в проводнике появляется, и его можно наблюдать в течение всего того периода, во время которого магнит движется. То есть электрический ток может возникать только в переменном магнитном поле. Впервые эту важную закономерность установил в 1831 году английский физик Майкл Фарадей.
Проведя серию опытов, Фарадей открыл, что электрический ток возникает (индуцируется) во всех тех случаях, когда происходит движение проводников относительно друг друга или относительно магнитов. Если вводить магнит в катушку или, что то же самое, перемешать катушку относительно неподвижного магнита в ней индуцируется ток. Если подвигать одну катушку к другой, через которую проходит электрический ток, в ней также появляется ток. Того же эффекта можно добиться при замыкании и размыкании цепи, поскольку в момент включения и выключения ток нарастает и убывает в катушке постепенно и создает вокруг нее переменное магнитное поле. Поэтому если поблизости от такой катушки находится другая, не включенная в цепь, в ней возникает электрический ток.
Открытие Фарадея имело огромные последствия для техники и всей человеческой истории, так как теперь стало ясно, каким образом механическую энергию превращать в электрическую, а электрическую — обратно в механическую. Первое из этих преобразований легло в основу работы электрогенератора, а второе — электродвигателя. Впрочем, сам факт открытия еще не означал, что все технические задачи на этом пути разрешены: около сорока лет ушло на создание работоспособного генератора и еще двадцать лет на изобретение удовлетворительной модели промышленного электродвигателя. Но главное: принцип действия двух этих важнейших элементов современной цивилизации сделался очевиден именно благодаря открытию явления электромагнитной индукции.
Первый примитивный электрогенератор создал сам Фарадей. Для этого он поместил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока.
Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году.
Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек E и E' двигались посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита AB, вследствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую задачу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. Тогда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов.
Скользящий контакт устроен следующим образом: на оси машины крепились два изолированных металлических кольца b и d, каждое из которых было соединено с одним из полюсов генератора. По окружности этих колец вращались две плоские металлические пружины B и B', на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких затруднений от вращения оси машины — ток переходил из оси в пружину в месте их соприкосновения.
Еще одно неудобство заключалось в самом характере тока электрогенератора. Направление тока в катушках зависит от того, приближаются они к полюсу магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере приближения катушки к одному из полюсов магнита сила тока будет нарастать от нуля до какого‑то максимального значения, а затем — по мере удаления вновь уменьшаться до нуля. При дальнейшем движении ток изменит свое направление на противоположное и опять будет нарастать до какого‑то максимального значения, а потом убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор создает переменный ток, и с этим приходится считаться.
Как известно, большинство современных электрических приборов созданы таким образом, чтобы питаться от сети переменного тока. Но в XIX веке переменный ток был неудобен по многим причинам, прежде всего психологическим, поскольку в прежние годы привыкли иметь дело с постоянным током. Впрочем, переменный ток можно было легко преобразовать в прерывистый, имеющий одно направление. Для этого достаточно было с помощью специального устройства — коммутатора — изменить контакты таким образом, чтобы скользящая пружина переходила с одного кольца на другой в тот момент, когда ток меняет свое направление. В этом случае один контакт постоянно получал ток одного направления, а другой — противоположного.
Подобное устройство пружины и контакта кажется, на первый взгляд, очень сложным, на деле же оно очень просто. Каждое кольцо коммутатора делали из двух полуколец, концы которых отчасти заходят друг за друга, а пружины были настолько широкими, что могли скользить по двум рядом помещенным полукольцам. Половины одного и того же кольца помещались на некотором расстоянии друг от друга, но были соединены между собой. Так, полукольцо a, прикасающееся к пружине c, было соединено с полукольцом a', по которому скользила c'; точно так же соединялись между собой b и b', так что при одном полуобороте пружина c, касающаяся a, переходила на b, а пружина c' переходила с b' на a'. Нетрудно было установить пружину таким образом, чтобы она переходила с одного кольца на другое в тот момент, когда в обмотке катушки менялось направление тока, и тогда каждая пружина все время давала ток одного и того же направления. Другими словами, они представляли из себя постоянные полюса; одна — положительный, другая — отрицательный, в то время как полюса катушек давали переменный ток.
Электрогенератор прерывистого постоянного тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших динамо‑машин, приводившихся в действие от парового двигателя. В этих генераторах чугунная станина несла на себе неподвижно укрепленные в несколько рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу были установлены несущие колеса с большим числом катушек. Также на валу был укреплен коллектор с 16‑ю металлическими пластинами, изолированными друг от друга и от вала машины. Ток, наводимый в катушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего привода паровой двигатель мощностью 6‑10 л.с. Большим недостатком генераторов «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получения сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих магнитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с такими недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока их не вытеснили более совершенные машины.
Прежде всего немецкий изобретатель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры».) Якорь Сименса в форме «двойного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изолированная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхватывали.
По сравнению с прежними новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов (для этого достаточно было удлинить якорь и прибавить несколько новых магнитов). Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов.
Но эти достоинства не компенсировали главного недостатка всех магнитоэлектрических машин — магнитное поле по‑прежнему создавалось в генераторе с помощью постоянных магнитов. Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металлические магниты электрическими? Проблема заключалась в том, что электромагниты сами потребляли электрическую энергию и для их возбуждения требовалась отдельная батарея или, по крайней мере, отдельная магнитоэлектрическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металлические магниты были заменены электромагнитами, а их возбуждение вызывала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую машину. Отсюда оставался только один шаг к собственно динамо‑машине, которая возбуждает электромагниты своим собственным током.
В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. (Одновременно с ним то же открытие сделали некоторые другие изобретатели.) В январе 1867 году он выступил в Берлинской академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся между полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи извне.
Первая динамо‑машина, работавшая по принципу самовозбуждения, была создана в 1867 году англичанином Леддом, но в ней еще предусматривалась отдельная катушка для возбуждения электромагнитов. Машина Ледда состояла из двух плоских электромагнитов, между концами которых вращались два якоря Сименса. Один из якорей давал ток для питания электромагнитов, а другой — для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний еще более увеличивал силу электромагнитов. Мало помалу такое взаимное усиление шло до тех пор, пока электромагниты не приобретали полной своей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.
Следующий шаг в совершенствовании динамо‑машины был сделан в том направлении, что совершенно устранили одну из арматур и воспользовались другой не только для возбуждения электромагнитов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при быстрой перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогревалось, и это могло при больших токах привести к порче всей машины. Необходима была другая форма якоря, более соответствовавшая новому режиму работы.
Удачное решение проблемы было вскоре найдено бельгийским изобретателем Зиновием Теофилем Граммом. Он жил во Франции и служил в кампании «Альянс» столярным мастером. Здесь он познакомился с электричеством. Размышляя над усовершенствованием электрогенератора, Грамм в конце концов пришел к мысли заменить якорь Сименса другим, имеющим кольцевую форму. Важное отличие кольцевого якоря (как будет показано ниже) состоит в том, что он не перемагничивается и имеет постоянные полюса (Грамм пришел к своему открытию самостоятельно, но надо сказать, что еще в 1860 г. итальянский изобретатель Пачинотти во Флоренции построил электрический двигатель с кольцеобразным якорем; впрочем, это открытие вскоре было забыто.)
Итак, исходная точка поисков Грамма заключалась в том, чтобы заставить вращаться внутри проволочной катушки железное кольцо, на котором наведены магнитные полюсы и таким образом получить равномерный ток постоянного направления.
Чтобы представить устройство генератора Грамма, рассмотрим сначала следующее приспособление. В магнитном поле, образуемом полюсами N и S, вращаются восемь замкнутых металлических колец, которые прикреплены на равном расстоянии друг от друга к оси при помощи спиц. Обозначим самое верхнее кольцо № 1 и будем считать по направлению хода часовой стрелки. Рассмотрим сперва кольца 1‑5. Мы видим, что кольцо 1 охватывает наибольшее число силовых линий магнитного поля, так как его плоскость перпендикулярна им. Кольцо 2 охватывает уже меньшее их число, так как оно наклонено к направлению линий, а сквозь кольцо 3 линии вовсе не проходят, так как его плоскость совпадает с их направлением. В кольце 4 число пересекаемых линий увеличивается, но, как легко заметить, они вступают в него уже с противоположной стороны, так как кольцо 4 обращено к полюсу магнита другой своей стороной по сравнению с кольцом 2. Пятое кольцо охватывает столько же линий, сколько первое, но входят они с противоположной стороны. Если мы будем вращать ось, к которой прикреплены кольца, то каждое кольцо будет последовательно проходить через положения 1‑5. При этом, при переходе из 1‑го положения в 3‑е в кольце возникает ток. На пути из положения 3 к 5, если бы силовые линии пересекали кольцо с той же самой стороны, в нем появлялся бы ток противоположный тому, что в положении 1‑3, но так как при этом кольцо изменяет свое положение относительно полюса, то есть поворачивается к нему другой стороной, ток в кольце сохраняет то же направление. Зато когда кольцо проходит из положения 5 через 6 и 7 опять к 1, в нем индуцируется ток, противоположный первому.
Заменив теперь наши воображаемые кольца витками вращающейся катушки, плотно намотанной на железное кольцо, мы получим кольцо Грамма, в котором ток будет индуцироваться точно так же, как описано выше. Предположим, что проволока обмотки не имеет изоляции, но железный сердечник покрыт изолирующей оболочкой и ток, индуцируемый в витках проводника, не может проходить в него. Тогда каждый виток спирали будет подобен тому кольцу, что мы рассматривали выше, и витки в каждой половине кольца будут представлять собой последовательно соединенные кольцевые проводники. Но обе половинки кольца соединены противоположно друг к другу. Значит, токи с обеих сторон направляются к верхней половине кольца, и там, следовательно, получается положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Можно, следовательно, сравнить кольцо с батареей, составленной из двух частей, которые соединены между собой противоположно.
Если теперь соединить противоположные концы кольца, то получится замкнутая цепь постоянного тока. В нашем воображаемом устройстве этого можно легко достичь, укрепив скользящие контакты в виде пружины так, чтобы они касались верхней и нижней части вращающегося кольца и снимали с их помощью электрический ток. Но в действительности генератор Грамма имел более сложное устройство, поскольку здесь было налицо несколько технических затруднений: с одной стороны, для того чтобы снимать ток с кольца, витки обмотки должны быть обнажены, с другой — для получения сильных токов обмотка должна быть намотана плотно и в несколько слоев. Каким же образом изолировать нижние слои от верхних?
На практике кольцо Грамма дополняло особое, довольно сложное устройство, называемое коллектором, которое и служило для отвода токов из обмотки. Коллектор состоял из металлических пластин, прикрепленных к оси кольца и имевших форму секторов цилиндра. Каждая пластина тщательно изолировалась от соседних секторов и от оси кольца. Концы каждого сектора обмотки были соединены с одной из металлических пластин, а скользящие пружины помещались так, что постоянно находились в соединении с самым верхним и самым нижним секторами обмотки. Из обеих половин обмотки получался постоянный ток, направленный к той пружине, которая была соединена с верхним сектором. Ток обходил верхнюю цепь и возвращался в кольцо через нижнюю пружину. Таким образом, полюса с поверхности самого кольца переместились на его ось, откуда ток было снимать намного проще.
В таком виде воплотилась первоначальная модель электрогенератора. Однако она оказалась неработоспособной. Как писал Грамм в воспоминаниях о своем изобретении, тут явилась новая сложность: кольцо, на которое был намотан проводник, сильно разогревалось вследствие того, что здесь тоже при быстром вращении генератора индуцировались токи. В результате перегрева изоляция то и дело выходила из строя. Ломая голову над тем, как избежать этой неприятности, Грамм понял, что железный сердечник якоря нельзя делать сплошным, так как в этом случае вредные токи оказываются слишком большими. Но разбив сердечник на части так, чтобы образовались разрывы на пути возникающих токов, можно было сильно уменьшить их вредное действие. Этого можно было добиться, изготовив сердечник не из цельного куска, а из проволоки, налагая ее в виде кольца и тщательно изолируя один слой от другого. На это проволочное кольцо затем навивалась обмотка. Каждый сектор якоря представлял собой катушку из многих оборотов (слоев). Отдельные катушки соединялись так, что проволока непрерывно обегала железное кольцо и притом в одном и том же направлении. От мест соединения каждой пары катушек шел проводник к соответствующей пластине коллектора. Чем больше было число оборотов катушки, тем большей силы ток можно было снять с кольца.
Изготовленный таким образом якорь устанавливался на ось генератора. Для этого железное кольцо с внутренней стороны снабжалось железными спицами, которые скреплялись с коллектором массивным кольцом, насаженным на ось машины. Коллектор, как уже говорилось, состоял из отдельных металлических пластин одинаковой ширины. Отдельные слои коллектора были изолированы друг от друга и от оси генератора.
Для снятия тока служили коллекторные щетки, представлявшие собой упругие латунные пластины, плотно прилегавшие к коллектору в надлежащих местах. Они соединялись с зажимами машины, откуда постоянный ток поступал во внешнюю цепь. Провод, идущий к одному из зажимов, кроме того, образовывал обмотку электромагнитов. Простейшее соединение генератора с обмотками электромагнита можно было получить, соединив один конец обмотки электромагнита с одной из щеток коллектора, например отрицательной. Другой конец обмотки электромагнита подключался к положительной щетке. При таком соединении весь ток генератора проходил через электромагниты.
В целом первая динамо‑машина Грамма представляла собой две железные вертикальные стойки, соединенные сверху и снизу стержнями двух электромагнитов. Полюсы этих электромагнитов находились в их середине, так что каждый из них был как бы составлен из двух, одинаковые полюса которых были обращены друг к другу. Можно рассматривать это устройство иначе и считать, что две половины, прилегающие к каждой стойке и соединенные ею, образовывали два отдельных электромагнита, которые соединялись одноименными полюсами сверху и снизу. В тех местах, где образовывался полюс, к электромагнитам были присоединены особой формы железные насадки, которые входили в пространство между электромагнитами и обхватывали кольцеобразный якорь машины. Две стойки, связывающие оба электромагнита и составлявшие основу всей машины, служили также для того, чтобы держать ось якоря и шкивы машины.
В 1870 году, получив патент на свое изобретение, Грамм образовал «Общество производства магнитоэлектрических машин». Вскоре было налажено серийное производство его генераторов, которые произвели подлинную революцию в электроэнергетике. Обладая всеми достоинствами самовозбуждающихся машин, они вместе с тем были экономичны, имели высокий КПД и обеспечивали практически неизменный по величине ток. Поэтому машины Грамма быстро вытеснили другие электрогенераторы и получили широкое распространение в самых разных отраслях. Тогда только появилась возможность легко и быстро преобразовывать механическую энергию в электричество.
Как уже говорилось, Грамм создавал свой генератор, как динамо‑машину постоянного тока. Но когда в конце 70‑х — начале 80‑х годов XIX века резко возрос интерес к переменному току, ему не стоило большого труда переделать его для производства переменного тока. В самом деле, для этого надо было только заменить коллектор двумя кольцами, по которым скользят пружины. Сначала генераторами переменного тока пользовались только при освещении, но с развитием электрификации они стали получать все большее применение и постепенно вытеснили машины постоянного тока. Первоначальная конструкция генератора также претерпела значительные изменения. Первая машина Грамма была двухполюсной, но в дальнейшем стали применять многополюсные генераторы, в которых обмотка якоря проходила при каждом обороте мимо четырех, шести и более попеременно установленных полюсов электромагнита. В этом случае ток возбуждался не с двух сторон колеса, как раньше, но в каждой части колеса, обращенной к полюсу, и отсюда отводился во внешнюю цепь. Таких мест (а соответственно и щеток) было столько, сколько магнитных полюсов. Затем все щетки положительных полюсов связывались вместе, то есть соединялись параллельно. Точно так же поступали и с отрицательными щетками.
По мере увеличения мощности генераторов возникла новая проблема — каким образом снять ток с вращающегося якоря с наименьшими потерями. Дело в том, что при больших токах щетки начинали искрить. Кроме больших потерь электроэнергии, это оказывало вредное воздействие на работу генератора. Тогда Грамм посчитал рациональным вернуться к самой ранней конструкции электрогенератора, примененной в машине Пиксии: он сделал арматуру неподвижной, а вращаться заставил электромагниты, ведь снять ток с неподвижной обмотки было проще. Он поместил катушки якоря на железном неподвижном кольце и заставил электромагниты вращаться внутри него. Отдельные катушки он связал между собой так, чтобы все те катушки, которые в данный момент подвергались одинаковому действию электромагнитов, были соединены последовательно. Таким образом Грамм разбил все катушки на несколько групп и каждую группу употребил для доставления тока в отдельную самостоятельную цепь. Однако возбуждающие ток электромагниты необходимо было питать постоянным током, так как переменный ток не мог вызвать в них неизменной полярности. Поэтому при каждом генераторе переменного тока необходимо было иметь небольшой генератор постоянного тока, откуда ток подводился к электромагнитам при помощи скользящих контактов.
51. ТЕЛЕФОН
С изобретением телеграфа была решена задача передачи сообщений на большие расстояния. Однако телеграф мог переслать только письменные депеши. Между тем многие изобретатели мечтали о более совершенном и коммуникабельном способе связи, с помощью которого можно было бы передавать на любые расстояния живой звук человеческой речи или музыку. Первые эксперименты в этом направлении предпринял в 1837 году американский физик Пейдж. Суть опытов Пейджа была очень проста. Он собрал электрическую цепь, в которую входили камертон, электромагнит и гальванические элементы. Во время своих колебаний камертон быстро размыкал и замыкал цепь. Этот прерывистый ток передавался на электромагнит, который так же быстро притягивал и отпускал тонкий стальной стержень. В результате этих колебаний стержень производил поющий звук, подобный тому, который издавал камертон. Таким образом, Пейдж показал, что передавать звук с помощью электрического тока в принципе возможно, надо только создать более совершенные передающее и принимающее устройства.
Следующий важный этап в развитии телефонии связан с именем английского изобретателя Рейса. Еще в студенческие годы Рейс заинтересовался проблемой передачи звука на расстояние при помощи электрического тока. К 1860 году он сконструировал до десятка различных устройств. Наиболее совершенное из них имело следующий вид.
Передатчик представлял собой полый ящик, снабженный спереди звуковым отверстием A и имевший в своей верхней части отверстие, закрытое тонкой, туго натянутой перепонкой. На этой перепонке лежала тонкая платиновая пластина p, а сверху находилось острие упругой платиновой иглы n, которая была приспособлена таким образом, что касалась пластины p, когда перепонка находилась в покое. Касание это прерывалось при колебании перепонки. Вследствие этих поперечных касаний замыкался и размыкался ток, идущий от батареи B через зажим a в платиновую пластинку p и через иглу n во второй зажим, от последнего провод шел к приемнику, проходил через спираль CC и возвращался в батарею через зажим d и соединенную с ним проволоку e. Внутри спирали помещалась тонкая железная спица, которая двумя своими концами прикреплялась к двум покоившимся на резонаторной доске gg стойкам ff. Части hi и ki образовывали на обеих станциях приспособления, имевшие целью дать знать отдаленному слушателю о начале переговоров. Воспроизведение звука, спетого в раструбе A, было основано на том, что железная спица, намагничиваясь и размагничиваясь проходящим по спирали электрическим током, начинала совершать колебательные движения; они ощущались как звук, соответствовавший тому звуку, который воспринимался приемником и колебаниями которого приводилась в движение перепонка. Резонансная доска служила для усиления звука.
С помощью телефона Рейса уже можно было передавать не только отдельные звуки, но и сложные музыкальные фразы и даже отчасти человеческую речь. Но качество передачи оставалось настолько низким, что часто было совершенно невозможно что‑нибудь разобрать. Побочные шумы, производимые замыканием и размыканием цепи, заглушали передачу, а звуки, воспроизводимые стальной иглой, были очень далеки от модуляций человеческого голоса. Для отчетливой передачи звука необходимо было добиться того, чтобы пластинки как отправителя, так и приемника выводились из своего положения покоя в крайнее положение током, сила которого нарастала бы постепенно, и чтобы при убывании ток опять проходил через первоначальное положение покоя. Все эти плавные колебания тембра звука, составляющие богатство человеческой речи, были совершенно недоступны телефону Рейса — притяжение здесь наступало стремительно и оставалось неизменным в течение некоторого времени, а затем совсем прекращалось.
Решить проблему передачи звука только замыканием и размыканием цепи оказалось невозможно. Прошло еще 15 лет, прежде чем шотландский изобретатель Александр Белл нашел более совершенный способ преобразования звуков в электрические сигналы. По профессии Белл был учителем глухонемых детей. С детства он много занимался акустикой, учением о звуке, и мечтал изобрести телефон. В 1870 году Белл переехал в Канаду, а в 1872 году — в США. Поселившись в Бостоне, он ввел в тамошней школе для глухонемых детей разработанную им систему «видимой речи». Она имела большой успех, и вскоре Белл сделался профессором Бостонского университета. Теперь у него была лаборатория и достаточно средств для того, чтобы посвятить себя работе над изобретением телефона. Забывая о сне, Белл целыми ночами просиживал над своими опытами. Первые его эксперименты повторяли работы Пейджа.
Летом 1875 года Белл и его помощник Томас Ватсон сделали установку, состоявшую из магнитов с подвижными язычками, которые приводились в действие колебаниями тока. В цепь с магнитами включались различные устройства. Ватсон и Белл находились в соседних комнатах. Ватсон передавал, а Белл принимал. Однажды, когда Ватсон нажал на кнопку в конце провода, чтобы привести в действие звонок, испортился контакт, и электромагнит притянул к себе молоточек звонка. Ватсон попытался оттянуть его, вследствие чего вокруг магнита возникли колебания. Движение пружины, произведенной Ватсоном, изменило интенсивность тока и вызвало колебательные движения в пружине противоположной станции в комнате Белла, и провод передал совсем слабый звук первого телефона. Так, совершенно случайно, Белл обнаружил, что магнит с легким якорем может быть и передатчиком и приемником сигнала. После этого осуществить передачу и воспроизведение звука с помощью электрического тока уже не представляло большого труда.
Чтобы понять как это происходит, представим себе постоянный магнит и поблизости от него гибкую железную пластину, которая колеблется под действием звуковых волн. Приближаясь к полюсу магнита, она будет усиливать его магнитное поле, а удаляясь от него — ослаблять. (Не вдаваясь в подробности, заметим, что причиной этому будет то же явление электромагнитной индукции, о котором говорилось в предыдущей главе: понятно, что в пластине, которая движется в магнитном поле, будет возникать электрический ток; этот ток будет создавать вокруг пластины собственное магнитное поле, которое и будет налагаться на магнитное поле магнита, то усиливая, то ослабляя его.) Теперь поместим на наш воображаемый магнит катушку с проволокой. При колебаниях магнитного поля в катушке будет возникать переменный электрический ток, причем то в одну, то в другую сторону. Пропуская полученный ток через обмотки другого магнита, мы будем влиять на его магнитное поле, которое тоже будет то возрастать, то убывать, причем в точности повторяя все изменения, происходящие в магнитном поле первого магнита. Если у полюса этого второго, принимающего магнита поместить железную пластинку, она будет то притягиваться к этому магниту под действием усиливающегося магнитного поля, то удаляться от него под влиянием своей упругости и при этом порождать звуковые волны, во всем подобные тем, что привели в колебание первую пластинку. Собственно, это и произошло при описанных выше обстоятельствах. Роль железной пластины здесь сыграл гибкий якорь магнита. Но это было слишком грубое приспособление, не способное передать многих нюансов звука. Белл стал искать, чем можно его заменить.
Один знакомый врач предложил ему воспользоваться для экспериментов человеческим ухом и раздобыл ему ухо от трупа. Внимательно изучая его строение, Белл установил, что звуковые волны приводят в колебание барабанную перепонку, от которой они передаются на слуховые косточки. Это навело его на мысль сделать тонкую металлическую мембрану, поместить ее рядом с постоянным магнитом и, таким образом, превратить звуковые колебания в электрические. Прошло несколько месяцев напряженного труда, прежде чем телефон заговорил. Только 10 марта 1876 года Ватсон отчетливо услышал на приемной станции слова Белла: «Мистер Ватсон, пожалуйста, придите сюда, мне нужно с вами поговорить». Еще раньше, 14 февраля, Белл сделал патентную заявку на свое изобретение. Всего через два часа после него такую же заявку на идентичный аппарат подал другой изобретатель — Илайша Грей. Однако патент был выдан в марте Беллу, поскольку он первый заявил о своем открытии. (Позже Беллу пришлось вести несколько судебных процессов с Греем и другими изобретателями, отстаивая свое первенство. В конце концов Белл купил у Грея право на эксплуатацию телефона.) На выставке в Филадельфии, проходившей в том же году, телефон Белла сделался главным экспонатом. С этого времени, несмотря на то что первые аппараты были еще очень несовершенны, телефоны стали быстро распространятся. В августе того же 1876 года в употреблении было уже около 800 телефонов, и спрос на них все увеличивался.
Устройство первых аппаратов было очень примитивным. Постоянный магнит A в форме стержня был окружен на одном полюсе короткой индукционной спиралью B из тонкой медной проволоки, оканчивавшейся двумя более толстыми проволоками CC, которые с помощью зажимов DD были соединены с проволоками LL. У одного полюса магнита помещалась зажатая по краям пластинка EE из мягкого листового железа. Все было вставлено в деревянную оправу, которая в части GG имела над пластинкой EE воронкообразное отверстие, служившее звуковым конусом. Снизу деревянная оправа суживалась, так как здесь она заключала в себе только магнитный стержень, закрепленный в своем положении винтом, и два провода CC. Этот аппарат мог служить одновременно и передатчиком, и приемником. На станции отправителя и на приемной станции имелось по такому телефону. Их индукционные спирали соединялись между собой посредством проводов LL и зажимов DD. Когда конусом GG пользовались как трубкой и говорили в него, пластинка EE перед полюсом магнита приходит в колебания; вследствие этого в спирали B возникали индукционные токи, изменение которых соответствовало действующим на пластинку звуковым колебаниям. Эти токи поступали через провода LL в спираль приемного телефона и вызывали колебание мембраны. Прижав конус к уху, можно было услышать голос говорившего на другом конце провода абонента. Индукционные токи, порождаемые движением мембраны, были очень слабы, поэтому устойчивое общение можно было наладить лишь на расстоянии нескольких сот метров. Далее голоса говоривших становились настолько тихими, что тонули в гуле помех. Потребовался труд многих и многих изобретателей, прежде чем телефон превратился в надежное средство связи.
Вообще телефонный аппарат Белла оказался более приспособлен для преобразования волн тока в звуковые волны, чем обратно. Поэтому очень важным в истории телефонии было открытие в 1877 году английским изобретателем Юзом микрофонного эффекта. В своем первоначальном виде микрофон имел следующее устройство.
Между двумя кусками угля C и C', укрепленных на пластине B, устанавливался угольный стержень с заостренными концами. Ток от элемента E проходил через этот угольный стержень и через обмотку телефона T. При встряхивании горизонтальной пластинки A, игравшей роль резонатора, угольный стержень смещался. В этот момент уменьшалось его сопротивление току в местах контактов, а это, в свою очередь, производило заметное усиление силы тока в телефоне. Мембрана начинала колебаться с большей амплитудой, отчего первоначальный звук усиливался в несколько раз. Слабое тиканье часов, положенных на подставку, воспринималось в телефоне как очень громкое. Даже ползанье мухи по пластине воспроизводилось в виде вполне заметного шума.
Через несколько лет после изобретения Юза появилось множество различных конструкций микрофонов. Широкое распространение получили микрофоны, в которых вместо стержней использовался угольный порошок. Колебания мембраны вызывали в этом случае то уплотнение порошка, то его разрыхление, вследствие чего постоянно менялось его сопротивление. Соединенный с микрофоном телефон стал работать намного надежнее, но он по‑прежнему оставался несовершенным. Слабые индукционные токи были не в состоянии преодолевать сопротивление передающих проводов. Необходимо было каким‑то образом усилить их напряжение, не меняя при этом характера их колебаний. Остроумный выход из положения нашел знаменитый американский изобретатель Эдисон, который предложил использовать для усиления напряжения индукционную катушку. Так телефонный аппарат был дополнен трансформатором.
О трансформаторах более подробно будет говориться в одной из последующих глав. Сейчас только поясним принцип его работы. Если насадить две катушки на один и тот же железный сердечник и пропускать через одну из них переменный ток, то во второй катушке тоже индуцируется переменный ток. Рассмотрим подробнее это явление. Созданное первой катушкой изменяющееся магнитное поле индуцирует в каждом витке второй катушки ток определенного напряжения. Витки катушки, как это уже было показано в предыдущей главе, можно рассматривать как последовательно соединенные источники тока. Тогда общее напряжение на обмотке второй катушки будет равно сумме напряжений всех ее витков. Если мы хотим увеличить напряжение, снимаемое со второй катушки, мы должны увеличить число витков. Таким образом, меняя число витков на второй катушке, мы можем получить на ней напряжение меньшее, равное или большее, чем на первой. Однако, во сколько раз возрастает напряжение, во столько же раз уменьшается сила тока, так что их произведение в первой и второй катушке остается равным (в действительности, из‑за неизбежных потерь во вторичной катушке это произведение даже несколько меньше). Трансформаторный эффект был открыт одновременно с явлением электромагнитной индукции, но поскольку в технике долгое время использовался только постоянный ток, он сначала не находил применения. Телефон оказался одним из первых устройств, где трансформатор (в виде индукционной катушки) получил некоторое распространение.
В созданном Эдисоном аппарате телефон и микрофон включались в две отдельные цепи. Источник тока, микрофон и первичная обмотка трансформатора соединены здесь в одну цепь, другая катушка и телефон‑приемник — в другую. Принцип работы этого телефона понятен: вследствие колебания мембраны сопротивление в микрофоне постоянно менялось, отчего постоянный ток батареи преобразовывался в пульсирующий. Этот ток подавался на первичную обмотку трансформатора. Во вторичной обмотке индуцировались такие же по форме токи, но более высокого напряжения. Они без труда преодолевали сопротивление проводов и могли передаваться на значительные расстояния. Усовершенствованный таким образом телефон вскоре получил широкое распространение.
В первое время аппараты связывались между собой попарно. Они не имели коммутаторов и звонков. Для вызова абонента к аппарату просто стучали карандашом по мембране. Впоследствии Эдисоном были введены электрические звонки. В 1877 году появилась первая центральная телефонная станция в Нью‑Хейвене (США). Порядок соединения здесь был таков. Абонент, желавший говорить с каким‑либо лицом или учреждением, в абонентной книжке разыскивал нужный номер и звонил на центральную станцию. Когда последняя отвечала, он сообщал нужный ему номер, и, если этот номер был не занят, оператор соединял его с требуемым лицом с помощью специальных штекеров и сообщал ему, что соединение готово. После этого абонент обращался уже к соединенному с ним лицу. По окончании разговора их разъединяли.
Современники очень быстро оценили удобства, которые давал телефон. Вскоре телефонные станции были построены во всех крупных городах. Одновременно рос спрос на телефонные аппараты. В 1879 году Белл создал свою фирму по производству телефонов, превратившуюся вскоре в мощный концерн. В течение десяти лет только в США было установлено свыше 100 тысяч телефонных аппаратов, а через 25 лет их уже насчитывалось более миллиона. Затем эта цифра увеличилась еще на порядок. Белл прожил долгую жизнь и мог наблюдать за распространением телефонии по всему свету. Он умер в 1922 году, и память его почтили своеобразной минутой молчания: когда гроб с телом изобретателя опускали в могилу, все телефонные разговоры прекратились. Пишут, что в США в эту минуту молчало более 13 миллионов телефонов.
Достарыңызбен бөлісу: |