Шешімі: 6*4=24
65.Тиынды 3 рет лақтырады. Оның тізбектелген әртүрлі цифр және елтаңба жағы қанша рет түседі?
Жауабы: 23
66. 1 кг, 2 кг, 3 кг, ....., 53 кг, 54 кг гиртастарын салмақтары бірдей болатын үш үйіндіге бөл.
Шешімі: Гаусс әдісі: 1+2+3+...+52+53+54=27*55=1485 1485/3=495
67. 1 кг, 2 кг, 3 кг, ....., 53 кг, 54 кг, 55 кг гиртастарын салмақтары бірдей болатын бес үйіндіге бөл.
Шешімі: 27*56+28=1540 1540:5=308кг (5 үйінді)
68. 555555 саны 3 пен 5-ке бөлінеді ме?
Шешімі: бөлінеді, себебі: 1)5-ке аяқталады – 5-ке бөлінеді, 2)цифрларының қосындысы 3-ке бөлінеді – 3-ке бөлінеді
69. Бір елде 20 қала бар. Оның әрқайсысы бір-бірімен ауебайланыста жұмыс жасайды. Бұл елде неше әуебайланыс бар?
Шешімі: 19+18+17+....+3+2+1=190
70. Поштада 5 әртүрлі конверт және 4 әртүрлі марка сатылады. Неше тәсілмен 1 конверт пен 1 марка сатып алуға болады?
Шешімі: 5*4=20
71. Егер кез келген хатты кез келген курьерге бере алатын болсақ, әртүрлі 6 хатты 3 курьер арқылы поштаға неше тәсілмен жіберуге болады?
Шешімі: 3*3*3*3*3*3=729
72. Тақтада 7 зат есім, 5 етістік, 2 сын есім жазылып тұр. Сөйлем құрау үшін әр сөз табынан бір сөзден алу керек. Мұны неше тәслмен жүзеге асыруға болады?
Шешімі: 7*5*2=70
73. 10 оқушы олимпиадада 35 есеп шығарды. Олардың арасында тек бір есеп, тек екі есеп, тек үш есеп шығарған оқушылар бар. Солардың ішінде бес есеп шығарған оқушы бар екенін дәлелдеңіз. Шешімі: Дирихле принципі: Егер n клеткаға n+1 қоян отырғызсақ, бір клеткада кем дегенде 2 қоян бар болады. 1. қоян рөлі 2. клетка рөлі 3. отырғызу реті 4.
жауабы 1+2+3=6 35-6=29 (есеп) 10-3=7 (оқушы) 1. есептер саны 2. оқушылар саны 3. шығарған есептер санына қарай 4. a=bc+r 29=7*4+1
74. 5 жас мамандардың барлығына жалақыға 1500 тг берілді. Олар ақшаны бөліп, әрқайсы өзіне 320 тг тұратын кітап сатып алғысы келеді. Біреуінің сатып ала алмайтынын дәлелдеңіз.
Шешімі: 1500/320=4 1. мамандар саны 2. кітаптар саны 3. кітаптардың санына қарай 4. 1500=320*4+220
75. Дөңгелек үстел басында 100 адам отыр. Ер адамдар әйел адамдардан артық. Дөңгелек бойымен бір-біріне қарама-қарсы отырған екі адамның ер адам екендігін дәлелдеңіз.
Шешімі: 1. адам саны 2. 50 жұп 3. жұптары бойынша отырғызу 4. ер адам көп болғасын 1 клеткада 2 ер адам отырады.
76. Отырған бес адамның ішінде таныс саны бірдей 2-ден кем емес адамдар бар екенін дәлелдеңіз.
Шешімі: 1. адамдар саны 2. таныс саны (0, 1, 2, 3, 4) 3. бірдей таныс санына қарай 4. 2-ден кем емес танысы бар адамдар бар.
77. Сыныптағы 43 оқушының дәптерлерінің түстері 6 түсті. Солардың ішінде бірдей түсті дәптерлері бар 8 оқушы табылатынын дәлелдеңіз.
Шешімі: 1. оқушылар 2. түстер саны 3. түсіне қарай 4. 43=7*6+1 7+1=8 13
78. Екі жас коллекционердің әрқайсында 20 маркадан және 10 значоктан бар. Бір маркаға бір марка, бір значокқа бір значок беруді олар шынайы айырбас деп атайды. Онда екі коллекционер бір-бірімен неше тәсілмен шынайы айырбас жасай алады?
Шешімі: 20*20=400 10*10=100 400+100=500
79. Сөреде 5 кітап тұр. Жинақ – бір немес бірнеше кітаптардан тұра алатын болса, кітаптарды неше тәсілмен жинақтарға бөлуге болады?
Достарыңызбен бөлісу: |