Математи́ческая моде́ль математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе



Дата06.02.2022
өлшемі19,88 Kb.
#80995
түріИсследование
Байланысты:
матемвт 2


Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе. Математическая модель предназначена предсказать поведение реального объекта, но всегда представляет собой ту или иную степень его идеализации.
Математическим моделированием называют как саму деятельность, так и совокупность принятых приёмов и техник построения и изучения математических моделей.
Все естественные и общественные науки, использующие математический аппарат, по сути, занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки эмпирических законов, гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект или процесс, построенный на этапе содержательного моделирования.
Математическая модель — это приближённое описание какого-либо класса явлений внешнего мира, выраженное математическими символами.
По Ляпунову, математическое моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель), находящаяся в некотором объективном соответствии с познаваемым объектом, способная замещать его в определённых отношениях и дающая при её исследовании, в конечном счёте, информацию о самом моделируемом объекте.
В других вариантах, математическая модель определяется как объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала, как «„эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям», как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира, как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе.
В автоматизированных системах управления математическая модель используется для определения алгоритма функционирования контроллера. Этот алгоритм определяет, как следует изменять управляющее воздействие в зависимости от изменения задающего для того, чтобы была достигнута цель управления.
Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.
Важнейшие математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в {\displaystyle U}-образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «общей теории систем».
Вместе с тем, следует помнить, что модель сама по себе является объектом и может обладать некоторыми собственными свойствами, не имеющими отношения к моделируемому реальному объекту; однако встречаются публикации даже в солидных журналах, где исследуются именно те свойства сложных математических моделей, которые не имеют отношения к моделируемому объекту.

Классификация моделей. Формальная классификация моделей.


Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий:
Линейные или нелинейные модели;Сосредоточенные или распределённые системы;Детерминированные или стохастические;Статические или динамические;Дискретные или непрерывные.
и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом — распределённые модели и т. д.
Классификация по способу представления объекта.
Наряду с формальной классификацией, модели различаются по способу представления объекта:
Структурные или функциональные модели
Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика». Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».
Содержательные и формальные модели.
Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель[7]. Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель, умозрительная модель или предмодель. При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершённых формализованных теорий (передний край физики, биологии, экономики, социологии, психологии, и большинства других областей), создание содержательных моделей резко усложняется.
Содержательная классификация моделей.
В работе Пайерлса дана классификация математических моделей, используемых в физике и, шире, в естественных науках. В книге А. Н. Горбаня и Р. Г. Хлебопроса эта классификация проанализирована и расширена. Эта классификация сфокусирована, в первую очередь, на этапе построения содержательной модели.
Гипотеза.
Модели первого типа — гипотезы («такое могло бы быть»), «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». По Пайерлсу это, например, модель Солнечной системы по Птолемею и модель Коперника (усовершенствованная Кеплером), модель атома Резерфорда и модель Большого Взрыва.
Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента[13].
Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.
Феноменологическая модель.
Второй тип — феноменологическая модель («ведем себя так, как если бы…»), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.
Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.
Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.
Приближение.
Третий тип моделей — приближения («что-то считаем очень большим или очень малым»). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый приём в этом случае — использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными. Стандартный пример — закон Ома.
Если мы используем модель идеального газа для описания достаточно разреженных газов, то это — модель типа 3 (приближение). При более высоких плотностях газа тоже полезно представлять себе более простую ситуацию с идеальным газом для качественного понимания и оценок, но тогда это уже тип 4.
Упрощение.
Четвёртый тип — упрощение («опустим для ясности некоторые детали»), в такой отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) — это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей (то есть не производится линеаризация нелинейных уравнений, а просто ищутся линейные уравнения, описывающие объект), то это уже феноменологические линейные модели, и относятся они к следующему типу 4 (все нелинейные детали «для ясности» опускаем).
Примеры: применение модели идеального газа к неидеальному, уравнение состояния Ван-дер-Ваальса, большинство моделей физики твердого тела, жидкостей и ядерной физики. Путь от микроописания к свойствам тел (или сред), состоящих из большого числа частиц, очень длинен. Приходится отбрасывать многие детали. Это приводит к моделям четвёртого типа.
Эвристическая модель.
Пятый тип — эвристическая модель («количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела»), такая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Типичный пример — приближение средней длины свободного пробега в кинетической теории. Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины.
Но при построении новой физики далеко не сразу получается модель, дающая хотя бы качественное описание объекта — модель пятого типа. В этом случае часто используют модель по аналогии, отражающую действительность хоть в какой-нибудь черте.
Аналогия.
Тип шестой — модель-аналогия («учтём только некоторые особенности»). Пайерлс приводит историю использования аналогий в первой статье Гейзенберга о природе ядерных сил[14].
Мысленный эксперимент.
Седьмой тип моделей — мысленный эксперимент («главное состоит в опровержении возможности»). Такой тип моделирования часто использовался Эйнштейном, в частности, один из таких экспериментов привёл к построению специальной теории относительности. Предположим, что в классической физике мы движемся за световой волной со скоростью света. Мы будем наблюдать периодически меняющееся в пространстве и постоянное во времени электромагнитное поле. Согласно уравнениям Максвелла, этого быть не может. Отсюда Эйнштейн заключил: либо законы природы меняются при смене системы отсчёта, либо скорость света не зависит от системы отсчёта, и выбрал второй вариант.
Восьмой тип — демонстрация возможности («главное — показать внутреннюю непротиворечивость возможности»), такого рода модели тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципами и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов — геометрия Лобачевского. (Лобачевский называл её «воображаемой геометрией».) Парадокс Эйнштейна — Подольского — Розена был задуман как мысленный эксперимент для демонстрации противоречивости квантовой механики, но незапланированным образом со временем превратился в модель 8 типа — демонстрацию возможности квантовой телепортации информации.


В основе содержательной классификации — этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Пайерлсу суть восемь типов исследовательских позиций при моделировании.
Предложено выделять три уровня сложности систем: простые физические, сложные физические и биологические системы, — причём отмечено, что в большинстве случаев недопустима редукция более сложных систем к более простым.

Достарыңызбен бөлісу:




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет