Сборник задач по курсу математического анализа ■ ' '4 f


§ 2. ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА



Pdf көрінісі
бет63/146
Дата06.02.2022
өлшемі9,73 Mb.
#80743
түріСборник задач
1   ...   59   60   61   62   63   64   65   66   ...   146
Байланысты:
Berman Sbornik


§ 2. ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА 
1 1 1

з
з
1636. Выяснить (не вычисляя), какой из интегралов больше:

1
2
 
2
1) ^ X" dx или ^ х 3 dx? 
2) ^ х‘“ dx или ^ х 3 dx?
О 


I
1637. Выяснить, какой из интегралов больше:
1
1
2
 
2
1) jj 2х“ dx 
или 
2х3 dx? 
2) ^ 2Х~ dx 
или 
^2xSdx?


1
1



4
3) ^ 1п х dx или 
\ (In х)-г/х? 4) ^ In х dx 
или 
^ (In x fd x ?
1
1
3
 
3
1
1638. Доказать, что ^ 1 -f- х 3 dx <
, воспользовавшись нера-
б
венством Коши — Буняковского:
ь 

Г ъ
ГЪ
Һ  (■*)  (■*) d x l ^ j /  5 [ /і (x)J * dx 1 / 5 [  (x)]2 dx.
a 

f
a
 
f
a
Убедиться, что применение общего правила дает менее точную оценку.
1639. 
Доказать, исходя из геометрических соображений, следующие 
предложения:
а) 
если функция /(х ) в интервале (а, Ь\ возрастает и имеет ьоту- 
тый график, то
ь
ф - а)/ (о )< ^ /
(.V ) 
d x < ф - а ) -*■
(" ) + 1
;
а


112
ГЛ. V. О П РЕД ЕЛ ЕНН Ы Й ИНТЕГРАЛ
б) 
если функция /(х ) в интервале [а, Ь\ возрастает и имеет выпук­
лый график, то
ь
(Ь - а) Ш + Ш  < ^ / (*) dx < (6 - а) т .
а
3
{* лг2 
d к
1640. Оценить интеграл V ^~+'xi » пользуясь результатом задачи 1639.
2
1
1641. Оценить интеграл ^ У 1 -j- х 4 dx, пользуясь:
о
а) основной теоремой об опенке интеграла,
б) результатом задачи 1639,
в) неравенством Коши — Буняковского (см. задачу 1638).
С р е д н е е з н а ч е н и е ф у н к ц и и
1642. Вычислить среднее значение линейной функции у — kx -f- b в 
интервале [хь х2]. Найти точку, в которой функция принимает это значение.
1643. Вычислить среднее значение квадратичной функции у — ах* 
в интервале [хь х 2]. В скольких точках интервала функция принимает 
это значение?
1644. Вычислить 
среднее 
значение функции 
у — 2х~ -J- Зх -j- 3 
в интервале [1. 4].
1645. Исходя из геометрических соображений, вычислить среднее 
значение функции у — ]/ а ~— х'2 в интервале [— а, а].
1646. Исходя из геометрических соображений, указать среднее зна­
чение непрерывной нечетной функции на интервале, симметричном отно­
сительно начала координат.
1647. Сечение желоба имеет форму параболического сегмента. Осно­
вание его а =  1 м, глубина Һ = 1,5 м (см. рис. 36 на стр. 107). Найти 
среднюю глубину желоба.
1648. Напряжение электрической цепи в течение минуты равномерно
увеличивается от 
100 в до £ j= 1 2 0 в. Найти среднюю силу тока
за это время. Сопротивление цепи 10 ом.
1649. Напряжение электрической цепи равномерно падает, убывая 
на 0,4 в в минуту. Начальное напряжение в цепи 100 в. Сопротивление 
в цепи 5 ом. Найти среднюю мощность тока в течение первого часа 
работы.
И н т е г р а л с п е р е м е н н ы м п р е д е л о м
1650. Вычислить интегралы с переменным верхним пределом:
X
X
X
1) ^ x*dx; 2) 
х8 dx; 3) 
dx.
о 

I


5 2. ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА 
1 1 3
1651. Скорость движения тела пропорциональна квадрату времени. 
Найти зависимость между пройденным расстоянием s и временем t, если 
известно, что за первые 3 сек тело прошло 18 см, а движение нача­
лось в момент t —  0.
1652. Сила, действующая на материальную точку, меняется равно­
мерно относительно пройденного пути. В начале пути она равнялась 
100 ньютонам, а когда точка переместилась на 10 м, сила возросла 
до 600 н. Найти функцию, определяющую зависимость работы от пути.
1653. Напряжение электрической цепи равномерно меняется. При 
t — ti оно равно Е\, при t = U оно равно £* Сопротивление R постоянно, 
самоиндукцией и емкостью пренебрегаем. Выразить работу тока как 
функцию времени t, прошедшего от начала опыта.
1654. Теплоемкость тела зависит от температуры так: с = cQ-\- at -j- 
-|- (3f2. Найти функцию, определяющую зависимость количества тепла, 
полученного телом при нагревании от нуля до t, от температуры t.
1655. Криволинейная трапеция ограничена 
параболой у — х3, осыо
абсцисс и подвижной ординатой. Найти значения приращения AS и диф­
ференциала dS площади трапеции при х = 1 0 и Дх = 0,1.
1656.
Криволинейная трапеция ограничена линией у
= У
х- 
-J- 
16 
,
осями координат и подвижной ординатой. Найти значение дифферен­
циала dS площади трапеции при х = 3 и Дх = 0,2.
1657. Криволинейная трапеция ограничена 
линией у = х'л, осыо
абсцисс и подвижной ординатой. Найти значения приращения Д5 пло­
щади, ее дифференциала dS, абсолютную (а) и относительную
ошибки, возникающие при замене приращения дифференциалом, если
л '= 4 , а Дх принимает значения 1; 0,1 и 0,01.
1658. Найти производную от функции
f 1 _ t -f- г*
У = \ T + T W dt
"Р" -*=>•
б
1659.
Найти производную от функции
X
у —  
sin х dx при х = 0, х 
б
1660. Чему равна производная от интеграла с переменным нижним 
и постоянным верхним пределом по нижнему пределу?

_______
1661. Найти производную от функции у —  ^ У 
х 2 dx при х = 0 
п 
х — 3 
/4.
dx.
и
Z.V
(" sin X
1662. Найти производную по х от функции у =  V ——
И X:
2
*


114
ГЛ. V. О П РЕД ЕЛ ЕНН Ы Й ИНТЕГРАЛ
1663. Найти производную но х от функции
с* 
1
1) ^ 
dz; .2) ^ 1п х dx.
х-
2
а
-
1664*. Найти производную по х  от функции ^ In8 х dx.
X
1665. Найти производную по х от функции у, заданной неявно:
у 
х
^ е* dt -{- ^ cos t dt = 0.


Достарыңызбен бөлісу:
1   ...   59   60   61   62   63   64   65   66   ...   146




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет