Cl–-канал апикального участка мембраны является трансмембранным регулятором, "сопровождающим" муковисцидоз
В последние годы резко возрос интерес к белку, функционирующему в качестве хлорного канала в апикальных участках мембраны секреторных клеток тонкой кишки, поскольку при врожденном заболевании — муковисцидозе (кистозном фиброзе) обнаружена мутация гена, кодирующего именно этот белок. Ген кодирует белок , состоящий из 1480 аминокислот и названный муковисцидозным трансмембранным регулятором (cystyc fibrosis transmembrane conductance regulator [CFTR]), который действует в качестве Cl–-селективного ионного канала. Он активируется цАМФ и имеется в клетках поджелудочной железы, кишечника, дыхательных путей, половых органов. Мутация этого гена приводит к нарушению секреции Cl–, что является причиной многих симптомов при муковисцидозе. Нарушение транспорта Cl– может быть прямым следствием дисфункции CFTR Cl–-канала. Мутация может приводить: (1) к образованию неполной цепочки белка, который быстро разрушается в клетке, (2) к синтезу белка с нормальной длиной цепочки, но не встраивающегося в апикальный участок мембраны, (3) к синтезу белка с полной (нормальной) длиной цепочки, но функционально дефектного, который встраивается в апикальный участок мембраны. Наиболее частая мутация — это потеря фенилаланина в положении 508 (ДР508), приводящая к образованию цепочки белка с почти полной длиной, не встраивающейся в мембрану клетки.
Молекулярные механизмы активации CFTR были изучены при анализе его аминокислотного состава (см. Рис. 5-8). Большой цитоплазматический домен (R-домен) содержит много участков, подвергающихся фосфорилированию проте
Рис. 5-7. Схема действия вторичного мессенджера сигнальной системы (цАМФ), обнаруженного в большинстве клеток. Связывание гормона (или нейротрансмиттера) с его рецептором образует активированный комплекс, взаимодействующий со стимулирующим G-белком (G;)
Рис. 5-7 (продолжение). Активированный G-белок освобождается от гуанозиндифосфата (ГДФ), с которым он связан в неактивированном состоянии, и соединяется с гуанозинтрифосфатом (ГТФ). Это приводит к образованию С;д и Gp у-субъединиц, после чего Gsa связывается с аденилатциклазой, которая катализирует образование цАМФ из АТФ. Циклическая АМФ образует связи с регуляторными субъединицами протеинкиназы А, от которой отсоединяются каталитические субъединицы, регулирующие фосфорилирование соответствующих участков белков. (По: DarnellJ., Lodish H., Baltimore D. Molecular Cell Biology, 2nd ed. New York Scientific American Books, W. H. Freeman, 1990.)
Рис. 5-8. Вероятное строение CFTR. Белок состоит из 1480 аминокислот, образующих около пяти доменов: два мембранно-соединенных домена (MSD1 и MSD2), каждый из которых содержит шесть сегментов, организованных таким образом, что формируют хлорный канал; и три цитоплазматических домена (NBF-1, NBF-2 и R), регулирующих активность канала
инкиназой А (ПКА). Было установлено, что удаление этих участков снижает активность хлорных каналов при повышении концентрации цитоплазматической цАМФ. Эти каналы имеют также два других цитоплазматических регуляторных домена, которые называются нуклеотидсвязывающими, так как они почти гомологичны семейству белков, связывающих и гидролизующих АТФ. Повышение концентрации цАМФ в цитоплазме активирует CFTR следующим образом: цАМФ связывается с каталитической субъединицей протеинкиназы А и освобождает активную каталитическую субъединицу, которая способствует фосфорилированию одной или нескольких сериновых структур R-домена CFTR. Затем нуклеотидсвязывающие участки присоединяют и гидролизуют АТФ, что в результате открывает каналы. Затраты энергии при этом необходимы для изменения конформационной структуры канала, что ведет к его открытию, после чего происходит пассивный транспорт ионов и затрат АТФ для этого процесса не требуется.
В секреторных клетках кишечника CFTR является единственным хлорным каналом, в то время как в секреторных клетках других тканей (дыхательные пути и слюнные железы) имеется еще и кальцийзависимый Сl–-канал в апикальном участке мембраны. Поэтому у больных с муковисцидозом эпителий кишечника не способен секретировать Сl–. Исследования распределения матричной РНК, проведенные с помощью гибридизации клеток показали, что информация для синтеза CFTR реализуется в клетках крипт кишки, где и происходят секреторные процессы.
Энтеротоксины бактерий активируют систему вторичных мессенджеров в клетках
Большинство данных о внутриклеточных механизмах абсорбции и секреции получены при изучении эффектов бактериальных энтеротоксинов, вызывающих тяжелую диарею. Наиболее показательно исследование холерного экзотоксина Vibrio cholerae — инфекции, вызывающей эпидемии в Азии и Южной Америке. Кишечная секреция под действием холерного токсина является следствием длительной активации аденилатциклазы и увеличения концентрации цитоплазматической цАМФ. Экзотоксин представляет собой пептид с массой 84 кД и состоит из одной А и пяти В субъединиц. Субъединица А является простым полипептидом массой 29 кД, в свою очередь, она состоит из двух компонентов — Al (23 кД) и А2 (6 кД), соединенных дисульфидным мостиком. После связывания холерного токсина через свои В субъединицы с поверхностью апикальной мембраны субъединица А проникает в клетку, где высвобождается компонент Al. В цитоплазме он действует как белок, катализирующий ковалентную модификацию G-протеина для активации аденилатциклазы. АДФ-рибоза присоединяется к аргининовому остатку -субъединицы Gs, после чего модифицированная -субъединица отсоединяется от - и -субъединиц и активирует аденилатциклазу, что приводит к повышению цАМФ и стимуляции апикальных Cl–-каналов в секреторных клетках и к снижению активности абсорбирующих клеток. В конечном счете это завершается тяжелой секреторной потерей солей и воды, опасной для жизни. Предполагается, что наличие у больного мутации гена CFTR, вызывающей у гомозигот тяжелые проявления муковисцидоза, у гетерозигот (с потерей только одного гена) сопровождается меньшей чувствительностью к некоторым факторам, способствующим секреторной диарее. Естественными стимуляторами секреции, опосредованными цАМФ, являются секреторные нейротрансмиттеры и, прежде всего, вазоактивный интестинальный полипептид.
Другим важным способом оценки механизмов нарушения секреторного процесса явилось исследование действия термостабильного энтеротоксина Escherichia coli (группа из 18-19-аминокислотных пептидов), активирующего гуанилатциклазу щеточной каемки. Эти секретируемые пептиды связываются с рецепторами гормона гуанидина на апикальном участке мембраны. По-видимому, данные рецепторы сами являются гуанилатциклазой, а связывание с ними стимулирует секрецию и угнетает абсорбцию через механизм цитоплазматической цГМФ.
Пероральная регидратация
Дегидратация организма может быть очень опасной. При острых нарушениях водно-солевого обмена наиболее часто применяется внутривенное введение воды и электролитов. В качестве альтернативного метода можно использовать пероральную регидратацию с применением растворов, содержащих смесь солей и глюкозы для максимальной стимуляции абсорбции солей и воды ворсинками тонкой кишки. Механизм такой регидратации основан на том, что при секреторной диарее, вызванной, например, холерным токсином, общее повышение секреции солей и воды обусловлено не только стимуляцией самой секреции, но и угнетением абсорбции, вероятно, за счет нарушения сочетанного транспорта ионов Na+ и С1 в апикальном участке мембраны клеток ворсинок. В то же время активность транспортера Na+/глюкоза не изменяется, поэтому даже при холере введение глюкозы в кишечник стимулирует абсорбцию ионов Na+. Действие глюкозы не влияет на секрецию, но может компенсаторно усилить абсорбцию ионов Na+ и воды, что суммарно снижает общую потерю солей и воды.
Наследственные нарушения электролитного транспорта
Наследственные нарушения транспорта электролитов весьма редко являются причиной диареи, но на их примере хорошо видна роль мембранных белков в механизме кишечного транспорта электролитов. В частности, нарушения всасывания глюкозы, галактозы и лактозы приводят к тяжелой диарее у новорожденных, которая исчезает при исключении этих веществ из диеты. У таких больных выявлена неспособность клетки кишечных ворсинок накапливать глюкозу и галактозу из-за дефекта функции котранспортера Na+/глюкoзa. Обнаружено, что при этой патологии в гене, кодирующем мембранный котранспортер Na+/глюкoзa, происходит единственная замена гуанина на аденин. В результате чего в кодируемом белке происходит замещение аспарагиновой кислоты в позиции 28 на аргинин.
При наследственных нарушениях абсорбции электролитов также могут повреждаться два других транспортных белка апикального отдела мембраны — Cl–/НСО3– и Na+/H+ антипорты, что в обоих случаях приводит к диарее. При врожденной хлоридорее тонкая и толстая кишки не способны активно абсорбировать СГ, поэтому происходит нарушение обмена Cl–/НСО3–, из-за чего стул имеет низкий рН. При этом обмен Na+/H+ не страдает, а степень абсорбции Na+ и НСО3–, наблюдаемая у таких больных, может быть смоделирована у здоровых людей перфузией подвздошной кишки солевым раствором, не содержащим хлориды. Исследования ионного транспорта показали, что при врожденной натриевой секреторной диарее нарушается обмен Na+/H+, тогда как сочетанный транспорт Na+-глюкoзa не изменен. У больных с таким врожденным нарушением развивается метаболический ацидоз, в фекалиях повышена концентрация Na+ и НСО3–. Перфузия кишки раствором, не содержащим глюкозу, позволяет выявить фоновую секрецию Na+ и Сl–.
Достарыңызбен бөлісу: |