5 - жаттығу жұмысы Кәдімгі дифференциалдық теңдеулерді
шешудің сандық тәсілдері
Жұмыстың мақсаты: дифференциалдық теңдеулерді шешудің сандық әдістерімен танысу; олардың алгоритмдерін, программасын жасау және оларды ДК пайдаланып шешу жолдарын меңгеру.
Өздігінен дайындалу тапсырмалары:
1 Төмендегідей әдістерді оқып, үйреніңіз:
Эйлер әдісін,
Рунге-Кутта әдісін.
2 Тапсырмаға байланысты есепті шешу алгоритмін жасаңыз.
3 Алгоритм бойынша есепті шешу программасын жасаңыз.
4 Программаны тексеруге тест жасаңыз.
Жұмыс тапсырмасы:
- А және 5-кесте бойынша тапсырмаларды жазып алыңыз;
- 5-кестедегі А тапсырма үшін Коши есебін 0,0001 дәлдікте Эйлер әдісімен сандық тәсілде шешіңіз. Берілгені: [a, b], y(xo) = yo; есептеу адымы h = 0,05;
- 5-кестедегі Б тапсырманы [0, 2] аралықта 0,0001 дәлдікпен Рунге-Кутт әдісімен шешіңіз. Есептеу адымы h = 0,05;
- программаның орындалуын тесті пайдаланып тексеріңіз;
- әдістерге салыстырмалы талдау жасаңыз.
5 кесте
Нұсқа
|
А тапсырмасы
|
Дифференциальдық теңдеулер
|
Алғашқы шарттар
|
[a, b] кесіндісі
|
1
|
|
|
|
Достарыңызбен бөлісу: |