Пусть A(D) – матрица смежности ориентированного псевдографа D=(V,X) (или псевдографа G=(V,X)), где V={v1,…, vn}. Обозначим через Ak=[a(k)ij] k-ю степень матрицы смежности A(D).
Элемент a(k)ij матрицы Ak ориентированного псевдографа D=(V,X) (псевдографа G=(V,X)) равен числу всех путей (маршрутов) длины k из vi в vj.
Матрица достижимости ориентированного графа D − квадратная матрица T(D)=[tij] порядка n, элементы которой равны
Матрица сильной связности ориентированного графа D − квадратная матрица S(D)=[sij] порядка n, элементы которой равны
Матрица связности графа G − квадратная матрица S(G)=[sij] порядка n, элементы которой равны
Достарыңызбен бөлісу: |