Сабақ жоспары doc


Зависимые и независимые события



бет9/15
Дата07.02.2022
өлшемі286 Kb.
#96862
түріСабақ
1   ...   5   6   7   8   9   10   11   12   ...   15
Байланысты:
Оқиға ықтималдығы және оның қасиеттері. Шартты ықтималдық. Ықтималдықтарды қосу және көбейту ережелері.

Зависимые и независимые события


Начнём с независимых событий. События являются независимыми, если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:
Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий  и  равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:
– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.
Найдём вероятность события  (на 1-й монете появится орёл и на 2-й монете появится орёл вспоминаем, как читается произведение событий!). Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события  и  независимы. По теореме умножения вероятностей независимых событий:

Аналогично:
вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.
Заметьте, что события  образуют полную группу и сумма их вероятностей равна единице:  .
Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события  независимы, то вероятность их совместного наступления равна:  . Потренируемся на конкретных примерах:
Задача 3
В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.
Решение: вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:
– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.
По классическому определению:
– соответствующие вероятности.
Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением  .
По теореме умножения вероятностей независимых событий:
– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.
Ответ: 0,504
После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:
Задача 4
В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.
Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.


Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   15




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет