КОНТРОЛЬНАЯ РАБОТА
по теории вероятностей и математической статистике Вариант 1.
Тема 1. Классическое и статистическое определение вероятности При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей, утеряна одна деталь, причем неизвестно какая. После перевозки наудачу извлеченная деталь оказалась стандартной. Найти вероятность того, что была утеряна а) стандартная деталь; б) нестандартная деталь.
Тема 2. Геометрические вероятности В любые моменты времени промежутка длиной Т равновозможны поступления в приемник двух независимых сигналов. Приемник не различает сигналов (забит), если разность между моментами поступления сигналов будет меньше τ. Определить вероятность того, что приемник будет забит.
Тема 3. Формула полной вероятности. Формула Байеса. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что этот шар белый, если равновозможны все предположения о первоначальном составе цветов.
Тема 4. Повторение испытаний (формула Бернулли, формула Пуассона, теоремы Лапласа) Частица пролетает последовательно мимо шести счетчиков, каждый из которых независимо от остальных отмечает ее пролет с вероятностью р=0.8. Частица считается зарегистрированной (событие А), если она отмечена не менее чем двумя счетчиками. Найти вероятность того, что частица будет зарегистрирована.
Тема 5. Дискретные случайные величины, закон распределения вероятностей В партии из 10 деталей имеется 8 стандартных. Наудачу отобраны 2 детали. Составить закон распределения числа стандартных деталей среди отобранных (такой закон называют гипергеометрическим). Определить функцию распределения, математическое ожидание и дисперсию данной дискретной случайной величины.
Тема 6. Непрерывные случайные величины, функция и плотность распределения Случайная величина X задана следующей функцией распределения