Функцияның туындысын алуды –функцияны дифференциалдаудейді.(а;в) интервалының әрбір нүктесінде туындысы бар функцияны сол интервалда дифференциалданады дейді. Мынадай тұжырым дұрыс болады: Егер f(x) функцисы х0 нүктеде дифференциалданса, онда функция х0 нүктеде үзіліссіз болады. 70. Лопиталь ережесі.f(x) және g(x) функциялары ( ) жағдайда нолге немесе шексіздікке ұмтылсын. Егер олардың туындыларының қатынасының шегі (ақырлы не ақырсыз) бар болса, функциялар қатынасының да шегі бар болады және мына қатынас орындалады: . Лопиталь ережесін қолданып ектерді есмептейік. 1. 2. 3. Үшінші мысалда Лопиталь ережесін бірден қолдануға келмейді. Сондықтан, алгебралық түрлендіру көмегімен түріндегі анықталмағандықты немесе түріндегі анықталмағандықтарға келтіреміз. Осы мақсатпен х2 бөлімнің бөліміне түсірілді. 4. . Айталық деп белгілеп, теңдеудің екі жағын логарифмдейік. Теңдеудіңоңжағынесептейі 71. Шексіз аздарды салыстыру.Екі шексіз аз шамаларды салыстыру үшін олардың қатынасын қарастырады. - ш.а.ш. болсын, яғни және .