13-сұрақ: Комплекс сандарға амалдар қолдану.
1.Егер екі комплекс сандардың нақты бөлігі мен нақты бөлігі, жорамал бөлігі мен жорамал бөлігі тең болса, онда бұл комплекс сандарды өзара тең деп атаймыз, яғни егер z=a+bi, w=c+di комплекс сандары үшін a=c, b=d теңдіктері орындалса, онда z және w комплекс сандарын өзара тең деп есептейміз және оны былай белгілейді: z=w .
2. z=a+bi және w=c+di комплекс сандардың қосындысы деп a+c+(b+d)i комплекс санын айтады, яғни z+w=a+ib+c+id=a+c+ib+d. Сонымен, екі комплекс сандарды қосу үшін олардың нақты бөлігі мен нақты бөлігін, жорамал бқлігі мен жорамал бөлігін қосса, жеткілікті.
Комплекс сандарды азайту z-w=a+ib-c+id=a-c+i(b-d)
z=a+bi және w=c+di комплекс сандарының көбейтіндісі деп
ac-bd+i(ad+bc) түріндегі комплекс санды айтады, яғни z∙w=a+ib∙c+id=ac-bd+i(ad+bc) . Осыдан екі комплекс санды көбейтуді көпмүшені көпмүшеге көбейту ережесімен орындап, i2=-1 теңдігін ескерсе, жеткілікті болады.
z=a+ib және z=a-ib түріндегі комплекс сандарын өзара түйіндес комплекс сандар деп аталады. Түйіндес комплекс сандардың көбейтіндісі нақты сан болады.
Егер екі комплекс санның нақты бөліктерінің де, жорамал бөліктерінің де таңбалары қарама-қарсы болса, онда оларды қарама-қарсы комплекс сандар деп атайды. Қарама-қарсы комплекс сандардың қосындысы 0-ге тең.
z=a+ib комплекс саны үшін a2+b2 теріс емес санын оның модулі деп атайды және модульді z арқылы белгілейді, яғни z =a2+b2 . Осыдан әрбір z комплекс саны мен оның түйіндесі z үшін z∙z=z2 теңдігі орындалатынын көреміз.
Комплекс сандарды бір-біріне бөлу амалын көбейту амалына келтіріп орындайды:zw=a+ibc+id=ac+bd+i(bc-ad)c2+d2 =ac+bdc2+d2+bc-adc2+d2i
Достарыңызбен бөлісу: |