Дан четырехугольник с вершинами: А(-2; -3), B(-1; 4), С(3; 3) и D(6; -1). Найти точку пересечения его диагоналей.
При каком значении параметра а прямые окажутся перпендикулярными?
Через начало координат и точку М(1; 3) проходят две параллельные прямые. Найти их уравнения, если известно, что расстояние между этими прямыми равно .
Прямая АВ отсекает на положительных полуосях OX и OY отрезки, соответственно равные 8 и 12 ед. Прямая CD проходит через точку С (-2; 0) и отсекает на оси ОУ отрезок b = 3. Найти угол между прямыми.
Найти абсциссу точки А(х; 1; 8) при условии, что расстояние от неё до плоскости, проходящей через точки В(7; 2; 4), С(7; -1; -2) и D(-5; -2; -1), равно 3 ед.
Найти угол между плоскостями и , где проходит через точки А( ) и B( ) параллельно оси OY, а задана уравнением .
Нормаль к плоскости составляет с координатными осями ОХ и OZ углы = = 60°, а с осью ОУ - острый угол. Составить уравнение плоскости при условии, что она проходит через точку М (1; 1; -1). Проверить, будет ли искомая плоскость параллельна плоскости .
Написать канонические уравнения прямой: .
Найти отношение, в котором координатная плоскость ХОY делит отрезок между точками А(-1; -4; 4) и B(1; 2; -5). Определить точку пересечения прямой АВ с плоскостью ХОY и угол между ними.
Проверить, что четырехугольник, вершины которого находятся в точках А(5; 2; 6), В(6; 4; 4), С(4; 3; 2) и D(3; 1; 4) есть квадрат.
Составить уравнение плоскости, проходящей через прямую параллельно прямой .