ЫҚТИМАЛДЫҚТАР ТЕОРИЯСЫ ЖӘНЕ МАТЕМАТИКАЛЫҚ СТАТИСТИКА ЭЛЕМЕНТТЕРІ
Кездейсоқ оқиғалар
Бірінші мысал. Қорапта 4ақ,9 қара және 7 қызыл бірдей шарлар салынған. Қораптан кез-келген бір шар алынады.Сонда ақ шар пайда болуының ықтималдылығы қандай?
Шешуі: А-ақ шар пайда болуы болсын.Бұл тәжірибеде элементарлық оқиға дегеніміз қораптан кез-келген бір шар алу.Шарлар бірдей болғандықтан бұл оқиғалар тең мүмкінді және өзара үйлесімсіз. Элементарлық оқиғалардың жалпы саны осы қораптағы шарлар санына тең n=20,ал А оқиғасына қолайлы элементарлық оқиғалар саны қораптағы ақ шарлар санына тең. Сондықтан ықтималдықтың анықтамасы бойынша
Екінші мысал:а:
а) Ө, Н, С, Е, Д, У әріптері бөлек карталарға жазылған. Содан кейін карталар араластырып кез-келген ретпен бір қатарға орналастырылған. Сонда сәндеу сөзінің пайда болуының ықтималдығы қандай?
б) Әрқайсысында бір әріп жазылған карталардан “Жарлық”сөзі құрылған.Карталарды араластырып, содан кейін бір-бірлеп алған ретімен сөз құрастырылады.Сонда ЖАҚ сөзінің пайда болуының ықтималдығы қандай?
Шешуі: а) Берілген алты карталардың бір қатарға әртүрлі орналасуларының бір-бірімен айырмашылығы олардың қандай ретпен орналасқандығында болады.Сондықтан ондай орналасулардың жалпы саны мына формуламен анықталады, яғни
n=
Берілген алты картаның әрбір орналасу комбинацияларын оқиға ретінде қарастырсақ, онда олар тең мүмкінді, үйлесімсіз оқиғалар болады. Ал бізге қолайлы элементарлық оқиғалар саны m=1.
Себебі карталар әртүрлі комбинациямен орналасқанда “Сәндеу” сөзі бір-ақ рет кезігеді.Сонда
б) Берілген алты карталардан үш карта бойынша орналастырулар саны n=. Ал үш әріптен тұратын комбинациялардың бізге керегі біреу-ақ, яғни ЖАҚ, олай болса m=1.Сөитіп
Үшінші мысал. Ұйымда 6 ер адам, 4 әйел адам жұмыс істейді. Табельдегі нөмірлері бойынша 7 адам таңдап алынды. Таңдап алынған адамдардың ішінде 3 әйел бар болуының ықтималдығын табу керек.
Достарыңызбен бөлісу: |