Лекция функция ұҒымы, Қасиеттері



бет2/14
Дата02.03.2022
өлшемі0,66 Mb.
#133897
түріЛекция
1   2   3   4   5   6   7   8   9   ...   14
Байланысты:
Лекция-5

Функция қасиеттері. y=f(x) функциясын қарастырайық.
1. Шенелген функция. Егер функцияның анықталу облысындағы кез келген х үшін қандай да бір М нақты сан табылып f(x)теңсіздігі орындалса функция жоғарыдан шенелген, ал f(x)>M теңсіздігі орындалса функция төменнен шенелген деп аталады (2 а,б-сурет) .
Егер функцияның анықталу облысындағы кез келген х үшін қандай да бір М нақты сан табылып |f(x)|теңсіздігі орындалса функция шенелген деп аталады (2 в-сурет).

2 а-сурет 2 б-сурет 2 в-сурет


2. Жұп және тақ функция. . Егер функцияның анықталу облысындағы кез келген х үшін
f(-x)=f(x)

теңдігі орындалса функция жұп деп, ал




f(-x)=-f(x)

теңдігі орындалса функция тақ деп аталады. Мысалы, y=x2n, y=|x| функциялары жұп, ал y=x2n+1, функциялары тақ болады.


Жұп және тақ функциялардың анықталу облыстары координаталар басына қарағанда симметриялы болады.
Жұп функция графигі Оу осіне, ал тақ функция графигі О(0,0) – координаталар басына қарағанда симметриялы болады.
Жұп функциялардың қосындысы, айырымы, көбейтіндісі, бөліндісі - жұп функция болады.
Тақ функциялардың қосындысы мен айырымы - тақ, ал көбейтіндісі мен бөліндісі - жұп функция болады.
Егер функция үшін f(-x)=f(x) және f(-x)=-f(x) теңдіктерінің екеуі де орындалмаса функция жұп та, тақ та емес (бейтарап) болады. Мысалы, y=x2 функциясы жұп та, тақ та емес.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   14




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет