Синтезді анализ арқылы бөлінген бөліктерді ойша немесе практикалық түрде біріктіру деп түсінеміз. Анализдеу үрдісінде күрделіден қарапайымға, бір түрліден екі немесе көп түрліге, нақтыдан абстрактіліге, белгісізден белгіліге, салдардан салдар туғызған себепке қарай қозғалады, ол синтезде керісінше жүреді.
Математиканы оқыту үрдісінде кең түрде қолданылатын аналитикалық және синтетикалық әдістерге тоқталайық:
Элементар анализ және синтез. Математикада элементар анализ бүтінді құрамды бөліктерге ажырату, ал элементар синтез сол құрамды бөліктерді қайтадан бүтінге жинақтау ретінде қолданылады.
Қолдану мысалдары: Элементар синтез ұғымының елеулі қасиеттерін біріктіреді;
Ұғымдарды жіктеуде (классификацияда) қолданылады;
Көптеген математикалық сөйлемдерді дәлелдеу барысында оларды бөліктерге ажырату керек болады, яғни элементар талдау қолданылады,
Мектеп геометрия курсындағы кез келген аксиома элементар синтездің мысалы болады;
Бір жиынды екінші жиынға изоморфты бейнелеуде синтез жүзеге асады.
Индукция және дедукция. Индукция және дедукция өзара байланысты таным әдістері. Индукциы (латын. Inducti – бағыттау), дедукция (латын. Deductio – қорытындылау) терминдерінің үш мәні бар:
1.ой қорытындысының түрлері
2.зерттеу әдістері
3.материалды баяндау формалары
Индукция деп – объектілер класының бөліктері туралы бөлімдер негізінде ол класс туралы қорытынды жасау, яғни жекеден жалпыға өтудегі ой қорыту түсініледі.
Математикада индуктивті әдіс деп – тәжірибе арқылы тексерілген және дұрыстығы қатаң түрде тағайындалған теориялық сипаттағы айғақтар негізінде жаңа қорытындылар мен теориялар алу деп түсіндіріледі. Оның екі түрі бар:
1.Толық индукция – объектілер класы туралы, ол объектілер класының барлығын түгел қарастыру арқылы жалпы қорытынды шығаратын ой қорыту.
2.Толымсыз индукция – объектілер класының барлығын қарастырмайтын тиянақтар арқылы жалпы қорытынды шығаратын ой қорыту.
Толымсыз индукцияның үш түрі бар:
1.Жай санап шығу арқылы немесе әйгілі индукция.
2.деректерді таңдап алу арқылы индукция.
3.ғылыми индукция объектілер класының барлығына қатысты болатын, жеке объектінің қажетті белгілерін немесе себептік байланысын білу негізіндегі ой қорыту.
Математикалық индукция деп алғашқы элементі туралы жасалған тұжырымның шындығы келесі элементі үшін де дұрыс болатын тұжырымды айтамыз. Математикалық индукция әдісі математикалық индукция қағидасына негізделеді. Сонымен математикалық индукция әдісінің мәні мынада:
1-қадам. Теореманың (есеп, формула) n=1 үшін дұрыстығы тексеріледі
2-қадам. Теорема кез-келген n=к болғанда дұрыс деп ұйғарылады.
3-қадам. Осы ұйғарымға сүйене отырып, теораманың n=к+1 үшін дұрыстығы дәлелденеді.
Үшінші қадамның дұрыстығы және математикалық индукция қағидасы негізінде кез-келген натурал n үшін теорема дұрыс деген қорытынды шығарылады.
Мысалы, математикалық индукция әдісімен мына формуланың дұрыстығын дәлелдеу керек:
1-қадам. n=1 болғанда
2-қадам. n=к болғанда (*) формуласы дұрыс деп жориық, яғни
Енді n=к+1 болғанда (*) формуласының дұрыстығын көрсетейік:
3-қадам. Алғашқы екі қадамдағы дәлелдеулердің нәтижелерін ескеріп және математикалық индукция әдісін қолданып, (*) формуласын кез-келген nN үшін дәлелденген деп есептейміз.