Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.
Комплексная входная проводимость схемы:
Условие резонанса токов: или , откуда резонансная (собственная) частота.
Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника .
В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение: = G, а ток источника также минимален и совпадает по фазе с напряжением источника (= 0): I =UY = UG.
Тема урока: Тепловая защита электроустановок.
Урок
Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.
На рис. приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.
Входная комплексная проводимость схемы:
Условие резонанса:
или
Отличие данного условия резонанса от аналогичного условия для простейшей схемы рис. 64 состоит в том, что в этом уравнении присутствуют параметры активных элементов R1 и R2.
Анализ полученного уравнения показывает, что при изменении параметров одного из элементов схемы возможны различные варианты решения.
При изменении сопротивлений R1 и R2 возможны два варианта решения: 1)существует одна точка резонанса (корни уравнения вещественные; один положительный, а другой отрицательный); 2)резонанс в схеме невозможен (корни уравнения комплексные).
При изменении индуктивности L или емкости C возможны три варианта решения: 1)существует две точки резонанса (корни уравнения вещественные и оба положительные); 2)существует одна точка резонанса (корни уравнения равные и положительные); 3)резонанс в схеме невозможен (корни уравнения комплексные).
Решая уравнение резонанса относительно частоты, получим:
Анализ этого уравнения показывает, что при R1 = R2 резонансная частота имеет выражение , как и для простейшей схемы рис. 1, а при для 0 получается неопределенное решение, что физически означает резонансный режим на любой частоте.
На рис.10 приведена схема последовательного контура, в которой реальные элементы (катушка и конденсатор) представлены различными схемами замещения.
Входное комплексное сопротивление схемы:
Достарыңызбен бөлісу: |