I Z ХМ
X1ХМ X2ХМ
E
Рис. 74
Если ветви с магнитносвязанными катушкам присоединены к общему узлу одноименными выводами, то магнитная развязка имеет вид рис. 75:
Если ветви с магнитносвязанными катушкам присоединены к общему узлу разноименными выводами, то магнитная развязка имеет вид рис. 76:
Замена исходной схемы с магнитносвязанными катушками эквивалентной схемой без магнитных связей называется развязкой магнитных связей или магнитной развязкой. Магнитная развязка электрических схем применяется для упрощения их расчета. После выполнения магнитной развязки к расчету схемы применим любой метод расчета сложных схем.
Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) нагрузка ZН (рис. 77).
Уравнения Кирхгофа для схемы трансформатора в комплексной форме имеют вид:
(1)
(2)
С целью магнитной развязки схемы добавим в уравнение (1) слагаемые (I1jXМI1jXМ), а в уравнении (2) слагаемые (I2jXМ– I2jXМ), в результате получим:
Новые уравнения являются контурными для некоторой новой эквивалентной схемы без магнитных связей (рис. 78):
Таким образом, магнитная развязка трансформатора имеет вид рис. 79:
Следует иметь в виду, что магнитная развязка является математическим приемом, направленным на упрощение расчета схемы цепи, и физически не всегда может быть заменена электрической цепью. Например, схема рис. 79 может быть реализована цепью только при условии X1ХМ>0 и X2ХМ >0.
Практическая работа № 8 «Изучение основных свойств симметричной и несимметричной трехфазных систем при соединении звездой»
Урок
Тема урока: параметры импульсных тиратронов и клипперного диода.
Урок
С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.
Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:
1)узлы графа соответствуют узлам схемы;
2)ветви графа соответствуют ветвям схемы;
3) направление ветвей соответствует направлению токов в ветвях схемы.
Любая часть графа называется подграфом. Минимальный связанный подграф, соединяющий все узлы графа и не образующий контуров, называется деревом графа (на схеме графа обозначается жирной линией). Для конкретного графа может быть составлено определенное множество вариантов деревьев, но в расчете схемы принимается любой из вариантов. Ветви графа, не входящие в его дерево, называются связями или хордами.
Структура графа и соответственно структура электрической схемы может быть описана с помощью топологических матриц или матриц соединения. Таких матриц несколько, для расчета электрических цепей используются две основные: матрица соединений «узлы-ветви» и матрица соединений «контуры-ветви».
В общем случае сложная схема содержит «m» ветвей и «n» узлов, при этом максимальное число ветвей зависит от числа узлов: .
Составим таблицу соединений «узлы-ветви» руководствуясь следующими правилами:
1 – ветвь выходит из узла,
1 – ветвь входит в узел,
0 – отсутствие связи с узлом.
Т а б л и ц а 1
№ узла \ № ветви
|
1
|
2
|
3
|
4
|
5
|
6
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
2
|
1
|
0
|
1
|
0
|
1
|
0
|
3
|
0
|
1
|
1
|
0
|
0
|
1
|
4
|
0
|
0
|
0
|
1
|
1
|
1
|
Достарыңызбен бөлісу: |