Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
Решение.
Площадь боковой поверхности призмы равна произведению периметра основания на высоту боковой грани.
Высота боковой грани у исходной призмы и отсеченной призм совпадает. Поэтому площади боковых граней относятся как периметры оснований. Треугольники в основании исходной и отсеченной призм подобны, все их стороны относятся как 1:2. Поэтому периметр основания отсеченной призмы вдвое меньше исходного. Значит, площадь боковой поверхности исходной призмы равна 16.
Задача №7
Плоскость, проходящая через три точки A, B и С, разбивает правильную треугольную призму на два многогранника. Сколько рёбер у многогранника, у которого больше вершин?
Решение.
Плоскость делит призму на две призмы: треугольную, имеющую 6 вершин и четырёхугольную, имеющую 8 вершин.
Четырёхугольная призма имеет по 4 ребра в каждом из оснований и 4 боковых ребра, всего 12 рёбер.
Задача №8
Сторона основания правильной треугольной призмы ABCA1B1C1 равна 3, а высота этой призмы равна 4√3. Найдите объём призмы ABCA1B1C1.
Решение.
Объём правильной треугольной призмы
вычисляется по формуле:
Задача №9
Площадь поверхности правильной треугольной призмы равна 6. Какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза?
Решение.
Площади подобных тел относятся как квадрат коэффициента подобия.
Поэтому если все ребра увеличить в три раза, площадь поверхности увеличится в 9 раз. Значит , она станет равна 54.