3)Арифметикалық амалдарды жазбаша орындау тәсілдері. Арифметикалық амалдар - берілген сандар бойынша тиісті шартты қанағаттандыратын басқа бір санды табу әдісі. Мектеп арифметикасында натурал сандар мен оң бөлшектерді қосу, азайту, көбейту, бөлу амалдары қарастырылады. Берілген натурал сандарды қосу деп сол сандарда қанша бірлік болса, сонша бірліктерден құралған санды табу амалын айтады. Берілген сандар қосылғыштар, ал қосу нәтижесі қосынды деп аталады. Мыс., 5+7+8=20, мұндағы 5, 7, 8 — қосылғыштар, 20 — қосынды. Қосу амалы ауыстырымдылық (коммутативтілік) және терімділік (ассоциативтілік) заңдарына бағынады. Ерте кезде сандарды сол жақтан бастап қосатын болған. Өзімізге үйреншікті түрдегі қосу тәсілі және оның таңбасы (+) 15 ғасырда енгізілген. Қосуға байланысты есептер бәріміз білетіндей бірінші сыныпттан бастап беріледі.
Азайту амалы деп берілген қосынды мен бір қосылғыш бойынша екінші қосылғышты табу амалын айтады. Берілген қосынды азайғыш, берілген қосылғыш азайтқыш, ал азайту нәтижесі деп аталады. Сонымен, азайту амалы — қосу амалына кері амал. Мыс., 15—8=7; 15 — азайғыш, 8 — азайтқыш, 7 — айырма. Ертеректе азайту амалы да қазіргіге керісінше, сол жақтан басталып отыратын.Қазіргі үйреншікті тәсіл Европада 15 ғасырдан бастап қолданылған. Азайту таңбасының (—) да шыққан кезі— сол уақыт.
Азайту қосу амалынан кейін үйретіледі.Мысалы мынандай есептер болады:
Натурал сандарды көбейту деп бірдей қосылғыштардың қосындысын табу амалын айтады.Қосылғыш ретінде қайталанатын сан көбейгіш, оның неше рет қосылатынын көрсететін сан көбейткіш, ал амал нәтижесі көбейтінді деп аталады.Көбейгіш пен көбейткішті жалпы алғанда көбейткіштер деп те айтады.Мыс., 6×5=30, 6 —көбейгіш. 5 — көбейткіш, 30 — көбейтінді. Көбейту амалы да ауыстырымдылық, терімділік және үлестірімділік (дистрибутивтілік) заңдарына бағынады. Ертедегі Үндістанда көбейту амалы сол жағынан басталып орындалатын. Қазіргі үйреншікті тәсіл 15 ғасырдан бастап қолданылған. Көбейту таңбасы әуелде нүкте (•) түрінде (15 ғ.), кейін онымен қатар кірес (×) түрінде (17 ғ.) жазылатын болған.Мысал:
Екі көбейткіштің көбейтіндісінен сол көбейткіштердің бірі арқылы екіншісін табу амалы бөлу деп аталады. Бөлінетін сан бөлінгіш, оны бөлетiн сан бөлгіш, бөлу нәтижесі бөлінді деп аталады. Мыс., 12:3=4, 12 — бөлінгіш, 3 — бөлгіш, 4 — бөлінді. Бөлу амалы — көбейту амалына кері амал. Бөлу амалы бүтіндей бөлу және қалдықпен бөлу деп екі түрге бөлінеді. Қалдықпен бөлу дегеніміз — бөлгішпен көбейтіндісі берілген бөлінгіштен артпайтын ең үлкен бүтін санды табу деген сөз. Бұл іздеп отырған сан толымсыз бөлінді деп аталады. Бөлінгіштің толымсыз бөлінді мен бөлгіш көбейтіндісінен айырмасы қалдық деп аталады, ол — бөлгіштен әрқашан да кем болады. Мыс., 21-ді 4-ке бөлгенде, толымсыз бөлінді 5, қалдық 1 болады, яғни 21=4×5+1. Бөлудің қазіргі қолданылатын тәсілін 15 ғасырда италян ғалымдары ойлап шығарған. Бөлу таңбасын (:) алғаш қолданған—ағылшын ғалымы Джонсон. Теңдік таңбасын (=) алғаш енгізген ағылшын дәрігері — Роберт Рекорд. Арифметикалық амалдардағы қазіргі таңбалар тек 17 ғасырдың ақырында ғана барлық елдер де қолданыла бастаған.
29-билет