Делимость суммы, разости и произведения целых неотрицательных чисел



бет7/7
Дата11.12.2021
өлшемі57,35 Kb.
#99441
1   2   3   4   5   6   7
Байланысты:
Делимость суммы, разости и произведения целых неотрицательных чисел

Двоичная система счисления.

Двоичная система счисления, система счисления, построенная на позиционном принципе записи чисел, с основанием 2. В Д. с. с. используются только два знака — цифры 0 и 1; при этом, как и во всякой позиционной системе, значение цифры зависит дополнительно от занимаемого ею места. Число 2 считается единицей 2-го разряда и записывается так: 10 (читается: "один, нуль"). Каждая единица следующего разряда в два раза больше предыдущей, т. е. эти единицы составляют последовательность чисел 2, 4, 8, 16,..., 2n,... Для того чтобы число, записанное в десятичной системе счисления, записать в Д. с. с., его делят последовательно на 2 и записывают получающиеся остатки 0 и 1 в порядке от последнего к первому, например: 43 = 21·2 +1; 21 = 10·2 +1; 10 = 5·2+0; 5=2·2+1; 2 = 1·2+ 0; 1 =0·2 + 1; итак, двоичная запись числа 43 есть 101011. Т. о., 101011 в Д. с. с. обозначает 1·20+1·21 + 0×22 +1×23 + + 0·24 + 1·25.



 

В Д. с. с. особенно просто выполняются все арифметические действия: например, таблица умножения сводится к одному равенству 1·1 = 1. Однако запись в Д. с. с. очень громоздка: например, число 9000 будет 14-значным. Но благодаря тому, что в Д. с. с. используются лишь две цифры, она часто бывает полезной в теоретических вопросах и при вычислениях на ЦВМ.

Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет