Ықтималдылықтар теориясы кездейсоқ құбылыстардың заңдылығымен айналысатын математикалық ғылым болып табылады



бет11/30
Дата07.02.2022
өлшемі0,74 Mb.
#92932
1   ...   7   8   9   10   11   12   13   14   ...   30
Байланысты:
598d605b-380b-11e3-9dea-f6d299da70eeықтималдық теориясы

§9 Қайталамалы орналастырулар

Осы уақытқа дейін элементтер жиынынан орналастырулар жасағанда одан алынған элемент жиынға қайыра енбейтін еді, ондай орналастырулар болады. Біз енді қайталамалы орналастыруларда, яғни жиыннан алынған элемент сол жиынға қайыра енетінін қарастырамыз, мысалдар келтірейік.


1-мысал. 1,2,3 цифрларынан екі таңбалы неше сан жазуға болады?
Шешуі. Бұл есепті екі тәсілмен шешуге болады.
Бірінші тәсіл: цифрлары қайталанбайтын әр түрлі екі таңбалы сандарды тәсілмен жасаймыз, олар:
1 2 2 1 3 1
13 2 3 3 2
Екінші тәсіл: цифрлары қайталанып отыратын әр түрлі екі таңбалы сандарды біртіндеп жазсақ, мыналар шығады:
1 1 2 1 3 1
1 2 2 2 3 2
1 3 2 3 3 3
Яғни олардың барлық саны 3*3=9 болады. Басқаша аитқанда цифрлардың әрқайсысы да 3 тәсілмен алынады, сонда бірінші алынған цифр әр жолы екінші цифрмен комбинацияланады, сөйтіп, екі цифр комбинациясын

тәсілмен аламыз. Бұл мысалды әрі қарай да кеңете беруге болады.


2-мысал. Осы 1, 2, 3 цифрларын қайталамалы орналастырулар тәсілімен үш таңбалы, төрт таңбалы, k таңбалы неше сан құруға болады?
Шешуі. Үш таңбалы санның бірінші цифрын 3 тәсілмен, екіншісін де 3 тәсілмен алуға болады. Сонда алдыңғы екі цифрлы санды тәсілмен аламыз. Бұлардың әрқайсысы үшінші цифрмен комбинацияланады. Сонда үш цифрлы санды тәсілмен құруға болады. Осылайша талқыласақ, осы үш цифрдан 4 цифрлы сандарды тәсілмен, ал k цифрлы сандарды 3 тәсілмен құруға болатынын байқау қиын емес.
Енді есептің шартын өзгертіп, яғни берілген 1, 2, 3, цифр орнына 1, 2, 3,…., N цифрды алайық. Сонда N цифрдан әр түрлі екі цифрлы сандарды тәсілмен, әр түрлі үш цифрлы сандарды тәсілмен, ал k цифрлы әр түрлі сандарды тәсілмен құруға болады. Сонымен, мынадай қорытындыға келеміз:
Элементтері қайталанып келетін N элементтен k дан алынған орналастырулар


(1)
Формуласымен өрнектеледі. Мұны қайталамалы орналастыру немесе қайталамалы іріктеме формуласы деп айтады.
Қайталанбайтын орналастырулар мен алмастыруларды айтқанда іріктеме көлемі k≤N болатын. Ал, элементтері қайталанатын орналастырулар мен алмастырулар үшін k˂N, k=N және k˃N болуы мүмкін. Бұл факт жоғарыда келтірілген мысалдан айқын көрініп тұр.


Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   30




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет