Көбейту ережесі. Егер A жиыны a1,a2,…am,яғни m элементтен ,ал B жиыны b1,b2,…bk ,яғни к элементтен құралатын болса (бұл екі жиын бір жиыннан алынуы да мүмкін ),онда әрқайсысынан бір-бір элементтен алынған әр түрлі (ai,bj) комбинация саны m×k болады (i=1,2,…m: j=1,2,…,k).
Шынында,бұларды (аi,bj) түрінде m горизонталь және k вертикаль жолдардан тұратын мына таблицаға орналастыруға болады:
4-таблица
В
А
|
b1
|
b2
|
…
|
bk
|
a1
a2
…
…
am
|
(a1,b1)
(a2,b1)
…
…
(am,b1)
|
(a1,b2)
(a1,b2)
…
…
(am,b2)
|
…
…
…
…
…
|
(a1,bk)
(a2,bk)
…
…
(am,bk)
|
Бұл таблицадағы әрбір (ai,bj) тек бір реттен ғана кездеседі.Олардың (ұялардың) барлық саны -m×k.Бұл ереже жиын саны екіден артық болғанда да орындалады .Мысалы,элементтер саны сәйкес m,k,h сандарына тең болатын A{a1,a2,…,am},B{b1,b2,…,bk},C{c1,c2,…,ch} үш жиын берілсін .Әр жиынннан тек бір элементтен ғана алынған әр түрлі (ai,bj,ch) үш элемент комбинациясын жасауға болады,мұндағы i=1,2,…,m, j=1,2,…,k және l=1,2,…,h .Олардың саны -m×k×h өйткені A және B жиындарынан алынған әрбір (ai,bj) пары үшініші жиынның әрбір элементімен комбинацияланады.Бұл комбинация саны,әрине, (m×k)×h=mkh санына тең.Енді комбинаторикалық есептерді шешуге және ықтималдықтар теориясының есептерін шешуге қажетті бірнеше формулаларды қорытып,оларға мысалдар келтірейік.Мұны қайталанбайтын іріктемеге тиісті формулаларды қорытудан бастайық.
Достарыңызбен бөлісу: |